File size: 7,486 Bytes
8e8e221
 
2b42f4f
ef07f3f
 
 
0e514e1
 
ef07f3f
 
9a2407d
ef07f3f
8e8e221
 
 
 
 
 
 
 
ef07f3f
8e8e221
ef07f3f
 
15cef53
8e8e221
 
9a2407d
 
15cef53
8e8e221
ef07f3f
8e8e221
ef07f3f
 
8e8e221
ef07f3f
8e8e221
15cef53
ef07f3f
8e8e221
9a2407d
8e8e221
 
 
0e514e1
8e8e221
 
9a2407d
 
ef07f3f
9a2407d
 
 
ef07f3f
8e8e221
ef07f3f
 
15cef53
8e8e221
9a2407d
15cef53
8e8e221
 
 
15cef53
 
 
8e8e221
9a2407d
 
15cef53
8e8e221
 
 
 
 
 
 
 
 
 
 
 
9a2407d
 
8e8e221
15cef53
8e8e221
 
2b42f4f
8e8e221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2407d
 
ef07f3f
9a2407d
15cef53
9a2407d
ef07f3f
8e8e221
ef07f3f
 
15cef53
8e8e221
9a2407d
15cef53
9a2407d
ef07f3f
 
 
9a2407d
ef07f3f
 
8e8e221
15cef53
9a2407d
 
0e514e1
8e8e221
9a2407d
8e8e221
 
9a2407d
 
8e8e221
 
9a2407d
8e8e221
 
9a2407d
8e8e221
 
9a2407d
0e514e1
ef07f3f
9a2407d
15cef53
9a2407d
ef07f3f
8e8e221
 
 
0e514e1
ef07f3f
9a2407d
ef07f3f
8e8e221
 
 
 
 
 
 
0e514e1
9a2407d
8e8e221
 
 
4c6ee84
8e8e221
9a2407d
8e8e221
 
 
 
 
 
 
 
0e514e1
9a2407d
8e8e221
 
 
9a2407d
8e8e221
 
9a2407d
8e8e221
 
 
 
 
 
9a2407d
8e8e221
 
0e514e1
9a2407d
8e8e221
 
 
9a2407d
ef07f3f
9a2407d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Installation commands (run these first in Colab)
# !pip install deepface==0.0.79 tensorflow==2.10.0 opencv-python-headless==4.7.0.72 gradio==3.50.2

import gradio as gr
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import os
import shutil
import pandas as pd

# Google Drive integration (for Colab)
try:
    from google.colab import drive
    drive.mount('/content/drive')
except:
    pass

def verify_faces(img1, img2, threshold=0.6, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    try:
        # Save images
        img1_path = os.path.join(temp_dir, "img1.jpg")
        img2_path = os.path.join(temp_dir, "img2.jpg")
        Image.fromarray(img1).save(img1_path) if isinstance(img1, np.ndarray) else img1.save(img1_path)
        Image.fromarray(img2).save(img2_path) if isinstance(img2, np.ndarray) else img2.save(img2_path)

        # Verify faces
        result = DeepFace.verify(
            img1_path=img1_path,
            img2_path=img2_path,
            model_name=model,
            distance_metric="cosine"
        )

        # Create visualization
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))
        for i, path in enumerate([img1_path, img2_path]):
            img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
            ax[i].imshow(img)
            ax[i].axis('off')
            ax[i].set_title(f"Image {i+1}")
        
        verified = result['distance'] <= threshold
        plt.suptitle(f"{'βœ… MATCH' if verified else '❌ NO MATCH'}\nDistance: {result['distance']:.4f}")
        return fig, result
    
    except Exception as e:
        return None, {"error": str(e)}
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)

def find_faces(query_img, db_input, threshold=0.6, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    try:
        # Save query image
        query_path = os.path.join(temp_dir, "query.jpg")
        Image.fromarray(query_img).save(query_path) if isinstance(query_img, np.ndarray) else query_img.save(query_path)

        # Handle database input
        if isinstance(db_input, str):
            db_path = db_input
        else:
            db_path = os.path.join(temp_dir, "db")
            os.makedirs(db_path, exist_ok=True)
            for i, file in enumerate(db_input):
                ext = os.path.splitext(file.name)[1]
                shutil.copy(file.name, os.path.join(db_path, f"img_{i}{ext}"))

        # Find faces
        try:
            dfs = DeepFace.find(
                img_path=query_path,
                db_path=db_path,
                model_name=model,
                distance_metric="cosine",
                silent=True
            )
        except:
            return None, {"error": "No faces found in database"}

        df = dfs[0] if isinstance(dfs, list) else dfs
        df = df[df['distance'] <= threshold].sort_values('distance')

        # Create visualization
        num_matches = min(4, len(df))
        fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
        
        # Show query image
        query_img = cv2.cvtColor(cv2.imread(query_path), cv2.COLOR_BGR2RGB)
        axes[0].imshow(query_img)
        axes[0].set_title("Query")
        axes[0].axis('off')

        # Show matches
        for i in range(num_matches):
            if i >= len(df): break
            match_path = df.iloc[i]['identity']
            match_img = cv2.cvtColor(cv2.imread(match_path), cv2.COLOR_BGR2RGB)
            axes[i+1].imshow(match_img)
            axes[i+1].set_title(f"Match {i+1}\n{df.iloc[i]['distance']:.4f}")
            axes[i+1].axis('off')

        return fig, df[['identity', 'distance']].to_dict('records')
    
    except Exception as e:
        return None, {"error": str(e)}
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)

def analyze_face(img, actions=['age', 'gender', 'emotion']):
    temp_dir = tempfile.mkdtemp()
    try:
        # Save image
        img_path = os.path.join(temp_dir, "analyze.jpg")
        Image.fromarray(img).save(img_path) if isinstance(img, np.ndarray) else img.save(img_path)

        # Analyze face
        results = DeepFace.analyze(
            img_path=img_path,
            actions=actions,
            enforce_detection=False,
            detector_backend='opencv'
        )

        # Process results
        results = results if isinstance(results, list) else [results]
        fig = plt.figure(figsize=(10, 5))
        
        # Show image
        plt.subplot(121)
        img_display = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
        plt.imshow(img_display)
        plt.title("Input Image")
        plt.axis('off')

        # Show attributes
        plt.subplot(122)
        attributes = {k: v for res in results for k, v in res.items() if k != 'region'}
        plt.barh(list(attributes.keys()), list(attributes.values()))
        plt.title("Analysis Results")
        plt.tight_layout()

        return fig, results
    
    except Exception as e:
        return None, {"error": str(e)}
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)

# Gradio Interface
with gr.Blocks(title="Face Recognition Toolkit", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ§‘πŸ’» Face Recognition Toolkit")
    
    with gr.Tabs():
        with gr.Tab("Verify Faces"):
            with gr.Row():
                img1 = gr.Image(label="First Image", type="pil")
                img2 = gr.Image(label="Second Image", type="pil")
            verify_threshold = gr.Slider(0.1, 1.0, 0.6, label="Match Threshold")
            verify_model = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace"], value="VGG-Face")
            verify_btn = gr.Button("Verify Faces")
            verify_output = gr.Plot()
            verify_json = gr.JSON()
            
            verify_btn.click(
                verify_faces,
                [img1, img2, verify_threshold, verify_model],
                [verify_output, verify_json]
            )

        with gr.Tab("Find Faces"):
            query_img = gr.Image(label="Query Image", type="pil")
            db_input = gr.Textbox("/content/drive/MyDrive/db", label="Database Path")
            db_files = gr.File(file_count="multiple", label="Or Upload Images")
            find_threshold = gr.Slider(0.1, 1.0, 0.6, label="Similarity Threshold")
            find_model = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace"], value="VGG-Face")
            find_btn = gr.Button("Find Matches")
            find_output = gr.Plot()
            find_json = gr.JSON()
            
            find_btn.click(
                find_faces,
                [query_img, db_input, find_threshold, find_model],
                [find_output, find_json]
            )
            db_files.change(lambda x: None, db_files, db_input)

        with gr.Tab("Analyze Face"):
            analyze_img = gr.Image(label="Input Image", type="pil")
            analyze_actions = gr.CheckboxGroup(
                ["age", "gender", "emotion", "race"], 
                value=["age", "gender", "emotion"],
                label="Analysis Features"
            )
            analyze_btn = gr.Button("Analyze")
            analyze_output = gr.Plot()
            analyze_json = gr.JSON()
            
            analyze_btn.click(
                analyze_face,
                [analyze_img, analyze_actions],
                [analyze_output, analyze_json]
            )

demo.launch()