File size: 1,982 Bytes
9d5725e
 
 
 
 
 
761cff5
9d5725e
 
761cff5
9d5725e
 
 
 
761cff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5725e
 
 
 
 
 
 
 
761cff5
9d5725e
 
 
 
 
 
761cff5
9d5725e
 
 
 
 
 
 
761cff5
9d5725e
 
 
761cff5
9d5725e
 
 
 
 
761cff5
9d5725e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# Suppress warnings
warnings.filterwarnings('ignore')

# Ensure CUDA device is used
torch.set_default_device('cuda')

# Load the model and tokenizer
model_name = 'qnguyen3/nanoLLaVA-1.5'
try:
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map='auto',
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        trust_remote_code=True
    )
except ImportError as e:
    print("Error: Missing required dependencies. Make sure flash_attn is installed.")
    raise e

# Function to describe the uploaded image
def describe_image(image, prompt="Describe this image in detail"):
    messages = [{"role": "user", "content": f'<image>\n{prompt}'}]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize the text
    text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
    input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)

    # Process the image
    image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)

    # Generate a response
    output_ids = model.generate(
        input_ids,
        images=image_tensor,
        max_new_tokens=2048,
        use_cache=True
    )[0]

    # Decode and return the response
    description = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
    return description

# Set up the Gradio interface
gr.Interface(
    fn=describe_image,
    inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox(default="Describe this image in detail")],
    outputs="text",
    title="Image Description Model",
    description="Upload an image and receive a detailed description."
).launch()