Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@ import gradio as gr
|
|
2 |
import os
|
3 |
api_token = os.getenv("HF_TOKEN")
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.document_loaders import PyPDFLoader
|
@@ -15,9 +20,64 @@ from langchain.memory import ConversationBufferMemory
|
|
15 |
from langchain_community.llms import HuggingFaceHub, HuggingFaceEndpoint
|
16 |
import torch
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Load and split PDF document
|
22 |
def load_doc(list_file_path):
|
23 |
# Processing for one document only
|
@@ -43,7 +103,14 @@ def create_db(splits):
|
|
43 |
|
44 |
# Initialize langchain LLM chain
|
45 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
46 |
-
if llm_model == "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# llm = HuggingFaceEndpoint(
|
48 |
# repo_id=llm_model,
|
49 |
# huggingfacehub_api_token = api_token,
|
@@ -52,11 +119,11 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
52 |
# top_k = top_k,
|
53 |
# )
|
54 |
|
55 |
-
llm = HuggingFaceHub(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
else:
|
62 |
llm = HuggingFaceEndpoint(
|
|
|
2 |
import os
|
3 |
api_token = os.getenv("HF_TOKEN")
|
4 |
|
5 |
+
from langchain.llms.base import LLM
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from huggingface_hub import HfApi
|
8 |
+
import requests
|
9 |
+
|
10 |
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
20 |
from langchain_community.llms import HuggingFaceHub, HuggingFaceEndpoint
|
21 |
import torch
|
22 |
|
23 |
+
|
24 |
+
from langchain.llms.base import LLM
|
25 |
+
from transformers import AutoTokenizer
|
26 |
+
from huggingface_hub import HfApi
|
27 |
+
import requests
|
28 |
+
|
29 |
+
list_llm = ["HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-3.1-8B-Instruct"] # "mistralai/Mistral-7B-Instruct-v0.2" # meta-llama/Meta-Llama-3-8B-Instruct
|
30 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
31 |
|
32 |
+
class ZephyrLLM(LLM):
|
33 |
+
def __init__(self, repo_id, huggingfacehub_api_token, max_new_tokens=512, temperature=0.7, **kwargs):
|
34 |
+
super().__init__(**kwargs)
|
35 |
+
self.repo_id = repo_id
|
36 |
+
self.api_token = huggingfacehub_api_token
|
37 |
+
self.api_url = f"https://api-inference.huggingface.co/models/{repo_id}"
|
38 |
+
self.headers = {"Authorization": f"Bearer {huggingfacehub_api_token}"}
|
39 |
+
self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
40 |
+
self.max_new_tokens = max_new_tokens
|
41 |
+
self.temperature = temperature
|
42 |
+
|
43 |
+
def _call(self, prompt, stop=None):
|
44 |
+
# Format as chat message
|
45 |
+
messages = [{"role": "user", "content": prompt}]
|
46 |
+
|
47 |
+
# Apply Zephyr's chat template
|
48 |
+
formatted_prompt = self.tokenizer.apply_chat_template(
|
49 |
+
messages, tokenize=False, add_generation_prompt=True
|
50 |
+
)
|
51 |
+
|
52 |
+
# Send request to Hugging Face Inference API
|
53 |
+
payload = {
|
54 |
+
"inputs": formatted_prompt,
|
55 |
+
"parameters": {
|
56 |
+
"max_new_tokens": self.max_new_tokens,
|
57 |
+
"temperature": self.temperature
|
58 |
+
}
|
59 |
+
}
|
60 |
+
response = requests.post(self.api_url, headers=self.headers, json=payload)
|
61 |
+
|
62 |
+
if response.status_code == 200:
|
63 |
+
full_response = response.json()[0]["generated_text"]
|
64 |
+
|
65 |
+
# Extract the assistant reply from the full response
|
66 |
+
# After <|assistant|>\n, everything is the model's answer
|
67 |
+
if "<|assistant|>" in full_response:
|
68 |
+
return full_response.split("<|assistant|>")[-1].strip()
|
69 |
+
else:
|
70 |
+
return full_response.strip()
|
71 |
+
|
72 |
+
else:
|
73 |
+
raise Exception(f"Failed call [{response.status_code}]: {response.text}")
|
74 |
+
|
75 |
+
|
76 |
+
@property
|
77 |
+
def _llm_type(self) -> str:
|
78 |
+
return "zephyr-custom"
|
79 |
+
|
80 |
+
|
81 |
# Load and split PDF document
|
82 |
def load_doc(list_file_path):
|
83 |
# Processing for one document only
|
|
|
103 |
|
104 |
# Initialize langchain LLM chain
|
105 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
106 |
+
if llm_model == "HuggingFaceH4/zephyr-7b-beta":
|
107 |
+
llm = ZephyrLLM(
|
108 |
+
repo_id=llm_model,
|
109 |
+
huggingfacehub_api_token=api_token,
|
110 |
+
temperature=temperature,
|
111 |
+
max_new_tokens=max_tokens,
|
112 |
+
)
|
113 |
+
# if llm_model == "meta-llama/Llama-3.1-8B-Instruct":
|
114 |
# llm = HuggingFaceEndpoint(
|
115 |
# repo_id=llm_model,
|
116 |
# huggingfacehub_api_token = api_token,
|
|
|
119 |
# top_k = top_k,
|
120 |
# )
|
121 |
|
122 |
+
# llm = HuggingFaceHub(
|
123 |
+
# repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
124 |
+
# huggingfacehub_api_token=api_token,
|
125 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens}
|
126 |
+
# )
|
127 |
|
128 |
else:
|
129 |
llm = HuggingFaceEndpoint(
|