File size: 12,664 Bytes
d970572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Manim Code Examples (Community v0.19.0)

## Example 1: Basic Shapes and Text

**Description:** Shows a circle and text, then fades them out.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class BasicShapes(Scene):
    def construct(self):
        circle = Circle(color=BLUE, fill_opacity=0.5)
        text = Text("Hello Manim!").next_to(circle, DOWN)
        self.play(Create(circle), Write(text), run_time=5) # Longer duration for narration
        self.wait(5) # Pause for narration
        self.play(FadeOut(circle), FadeOut(text), run_time=5)
        self.wait(15) # Fill remaining time
```

```text
# ### NARRATION:
Here we create a blue circle and display the text "Hello Manim!" below it. After a brief pause, both elements fade away.
```

## Example 2: Vector Transformation with Labels

**Description:** Creates a vector, displays a transformation matrix, applies the transformation, and labels the steps.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class VectorTransform(Scene):
    def construct(self):
        # Setup
        axes = Axes(x_range=[-5, 5, 1], y_range=[-5, 5, 1], x_length=6, y_length=6)
        vec_start = np.array([1, 1, 0])
        matrix = np.array([[0, -1], [1, 0]]) # 90 deg rotation

        # Initial vector
        vector = Arrow(ORIGIN, vec_start, buff=0, color=YELLOW)
        vec_label = MathTex("v", color=YELLOW).next_to(vector.get_end(), UR, buff=0.1)
        self.play(Create(axes), Create(vector), Write(vec_label), run_time=6) # Show initial state

        # Matrix
        matrix_tex = MathTex(r"M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}", color=RED).to_corner(UL)
        self.play(Write(matrix_tex), run_time=4) # Introduce matrix

        # Transformation
        vec_end = np.append(np.dot(matrix, vec_start[:2]), 0)
        new_vector = Arrow(ORIGIN, vec_end, buff=0, color=GREEN)
        new_vec_label = MathTex("Mv", color=GREEN).next_to(new_vector.get_end(), UR, buff=0.1)
        transform_label = Text("Applying 90° Rotation", font_size=24).next_to(matrix_tex, DOWN, aligned_edge=LEFT)

        self.play(Write(transform_label), run_time=3) # Explain transform
        self.play(Transform(vector, new_vector), Transform(vec_label, new_vec_label), run_time=7) # Show transform

        self.wait(10) # Hold final state
```

```text
# ### NARRATION:
We start with vector v in yellow on the coordinate plane. This is the rotation matrix M we'll use. Now, we apply the matrix M to rotate vector v by 90 degrees, resulting in the green vector Mv.
```
## Example 3: BraceAnnotation

**Description:** Shows how to create braces and attach text/latex to them.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class BraceAnnotation(Scene):
    def construct(self):
        dot = Dot([-2, -1, 0])
        dot2 = Dot([2, 1, 0])
        line = Line(dot.get_center(), dot2.get_center()).set_color(ORANGE)
        b1 = Brace(line)
        b1text = b1.get_text("Horizontal distance")
        b2 = Brace(line, direction=line.copy().rotate(PI / 2).get_unit_vector())
        b2text = b2.get_tex("x-x_1")
        
        self.play(Create(line), Create(dot), Create(dot2), run_time=3)
        self.play(Create(b1), Write(b1text), run_time=3)
        self.play(Create(b2), Write(b2text), run_time=3)
        self.wait(21) # Fill remaining time
```

```text
# ### NARRATION:
Here we demonstrate how to add annotations with braces. First, we create a line between two dots. Then we add a horizontal brace with text below it showing "Horizontal distance." Finally, we add a vertical brace with mathematical notation showing the difference between x coordinates.
```

## Example 4: SinAndCosFunctionPlot

**Description:** Plots sine and cosine functions on an axis with labels.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class SinAndCosFunctionPlot(Scene):
    def construct(self):
        axes = Axes(
            x_range=[-10, 10.3, 1],
            y_range=[-1.5, 1.5, 1],
            x_length=10,
            axis_config={"color": GREEN},
            x_axis_config={
                "numbers_to_include": np.arange(-10, 10.01, 2),
                "numbers_with_elongated_ticks": np.arange(-10, 10.01, 2),
            },
            tips=False,
        )
        axes_labels = axes.get_axis_labels()
        sin_graph = axes.plot(lambda x: np.sin(x), color=BLUE)
        cos_graph = axes.plot(lambda x: np.cos(x), color=RED)

        sin_label = axes.get_graph_label(
            sin_graph, "\\sin(x)", x_val=-10, direction=UP / 2
        )
        cos_label = axes.get_graph_label(cos_graph, label="\\cos(x)")

        vert_line = axes.get_vertical_line(
            axes.i2gp(TAU, cos_graph), color=YELLOW, line_func=Line
        )
        line_label = axes.get_graph_label(
            cos_graph, r"x=2\pi", x_val=TAU, direction=UR, color=WHITE
        )

        # Animation sequence
        self.play(Create(axes), Write(axes_labels), run_time=3)
        self.play(Create(sin_graph), Create(cos_graph), run_time=5)
        self.play(Write(sin_label), Write(cos_label), run_time=3)
        self.play(Create(vert_line), Write(line_label), run_time=3)
        self.wait(16) # Fill remaining time
```

```text
# ### NARRATION:
In this animation, we plot the sine and cosine functions on a coordinate plane. The sine function is shown in blue, while the cosine function is shown in red. We add labels to each curve and mark a vertical line at x equals 2π to highlight this important value. Notice how the curves oscillate between -1 and 1 as they extend across the x-axis.
```

## Example 5: PointMovingOnShapes

**Description:** Demonstrates how to animate a dot moving along paths and rotating.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class PointMovingOnShapes(Scene):
    def construct(self):
        circle = Circle(radius=1, color=BLUE)
        dot = Dot()
        dot2 = dot.copy().shift(RIGHT)
        self.add(dot)

        line = Line([3, 0, 0], [5, 0, 0])
        self.play(Create(line), run_time=2)
        self.play(GrowFromCenter(circle), run_time=2)
        self.play(Transform(dot, dot2), run_time=2)
        self.play(MoveAlongPath(dot, circle), run_time=7, rate_func=linear)
        self.play(Rotating(dot, about_point=[2, 0, 0]), run_time=7)
        self.wait(10) # Fill remaining time
```

```text
# ### NARRATION:
Here we demonstrate moving and transforming objects. We begin with a dot and create a line and circle. Then, we transform the dot by shifting it to the right. Watch as the dot moves along the circular path at a constant speed. Finally, the dot rotates around a fixed point, showing how we can create complex animations by combining different movements.
```

## Example 6: ThreeDSurfacePlot

**Description:** Creates a 3D Gaussian surface plot with colored checkerboard pattern.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class ThreeDSurfacePlot(ThreeDScene):
    def construct(self):
        resolution_fa = 24
        self.set_camera_orientation(phi=75 * DEGREES, theta=-30 * DEGREES)

        def param_gauss(u, v):
            x = u
            y = v
            sigma, mu = 0.4, [0.0, 0.0]
            d = np.linalg.norm(np.array([x - mu[0], y - mu[1]]))
            z = np.exp(-(d ** 2 / (2.0 * sigma ** 2)))
            return np.array([x, y, z])

        gauss_plane = Surface(
            param_gauss,
            resolution=(resolution_fa, resolution_fa),
            v_range=[-2, +2],
            u_range=[-2, +2]
        )

        gauss_plane.scale(2, about_point=ORIGIN)
        gauss_plane.set_style(fill_opacity=1, stroke_color=GREEN)
        gauss_plane.set_fill_by_checkerboard(ORANGE, BLUE, opacity=0.5)
        axes = ThreeDAxes()
        
        self.play(Create(axes), run_time=2)
        self.play(Create(gauss_plane), run_time=3)
        self.begin_ambient_camera_rotation(rate=0.1)
        self.wait(25) # Fill remaining time
```

```text
# ### NARRATION:
In this animation, we're creating a three-dimensional Gaussian surface plot. We first set up the camera angle to view our 3D scene properly. The surface is defined by a Gaussian function that creates a bell curve shape in three dimensions. We apply a checkerboard pattern with orange and blue colors to highlight the surface features. Notice how the ambient camera rotation helps us visualize the 3D nature of the surface from multiple angles.
```

## Example 7: MovingAngle

**Description:** Shows an animated angle that changes based on a ValueTracker.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class MovingAngle(Scene):
    def construct(self):
        rotation_center = LEFT

        theta_tracker = ValueTracker(110)
        line1 = Line(LEFT, RIGHT)
        line_moving = Line(LEFT, RIGHT)
        line_ref = line_moving.copy()
        line_moving.rotate(
            theta_tracker.get_value() * DEGREES, about_point=rotation_center
        )
        a = Angle(line1, line_moving, radius=0.5, other_angle=False)
        tex = MathTex(r"\theta").move_to(
            Angle(
                line1, line_moving, radius=0.5 + 3 * SMALL_BUFF, other_angle=False
            ).point_from_proportion(0.5)
        )

        self.play(Create(line1), Create(line_moving), run_time=2)
        self.play(Create(a), Write(tex), run_time=2)
        self.wait(2)

        line_moving.add_updater(
            lambda x: x.become(line_ref.copy()).rotate(
                theta_tracker.get_value() * DEGREES, about_point=rotation_center
            )
        )

        a.add_updater(
            lambda x: x.become(Angle(line1, line_moving, radius=0.5, other_angle=False))
        )
        tex.add_updater(
            lambda x: x.move_to(
                Angle(
                    line1, line_moving, radius=0.5 + 3 * SMALL_BUFF, other_angle=False
                ).point_from_proportion(0.5)
            )
        )

        self.play(theta_tracker.animate.set_value(40), run_time=3)
        self.play(theta_tracker.animate.increment_value(140), run_time=3)
        self.play(tex.animate.set_color(RED), run_time=1)
        self.play(theta_tracker.animate.set_value(350), run_time=7)
        self.wait(10) # Fill remaining time
```

```text
# ### NARRATION:
This animation demonstrates how to create a dynamic angle that updates as values change. We start with two lines forming an angle of 110 degrees. Using updaters and a ValueTracker, we can animate the angle changing smoothly. Watch as we decrease the angle to 40 degrees, then increase it by 140 degrees. As the angle continues to change, we also highlight the theta symbol in red before completing a full rotation to 350 degrees.
```

## Example 8: GraphAreaPlot

**Description:** Demonstrates how to show areas between curves and Riemann rectangles.

```python
# ### MANIM CODE:
from manim import *
import numpy as np

class GraphAreaPlot(Scene):
    def construct(self):
        ax = Axes(
            x_range=[0, 5],
            y_range=[0, 6],
            x_axis_config={"numbers_to_include": [2, 3]},
            tips=False,
        )

        labels = ax.get_axis_labels()

        curve_1 = ax.plot(lambda x: 4 * x - x ** 2, x_range=[0, 4], color=BLUE_C)
        curve_2 = ax.plot(
            lambda x: 0.8 * x ** 2 - 3 * x + 4,
            x_range=[0, 4],
            color=GREEN_B,
        )

        line_1 = ax.get_vertical_line(ax.input_to_graph_point(2, curve_1), color=YELLOW)
        line_2 = ax.get_vertical_line(ax.i2gp(3, curve_1), color=YELLOW)

        riemann_area = ax.get_riemann_rectangles(
            curve_1, x_range=[0.3, 0.6], dx=0.03, color=BLUE, fill_opacity=0.5
        )
        area = ax.get_area(
            curve_2, [2, 3], bounded_graph=curve_1, color=GREY, opacity=0.5
        )

        self.play(Create(ax), Write(labels), run_time=3)
        self.play(Create(curve_1), Create(curve_2), run_time=4)
        self.play(Create(line_1), Create(line_2), run_time=3)
        self.play(FadeIn(riemann_area), run_time=3) 
        self.play(FadeIn(area), run_time=3)
        self.wait(14) # Fill remaining time
```

```text
# ### NARRATION:
In this animation, we visualize areas between curves using Manim's plotting capabilities. We create two functions, shown in blue and green, and mark two vertical lines at x equals 2 and x equals 3. The small blue rectangles demonstrate Riemann sums, which approximate the area under a curve. The gray shaded region shows the area between both curves from x equals 2 to x equals 3. These visualizations are powerful tools for understanding calculus concepts like integration and area between curves.
```