|
import atexit |
|
import functools |
|
from queue import Queue |
|
from threading import Event, Thread |
|
from paddleocr import PaddleOCR |
|
import documentos |
|
import herramientas |
|
|
|
LANG_CONFIG = { |
|
"ch": {"num_workers": 2}, |
|
"en": {"num_workers": 2}, |
|
"fr": {"num_workers": 1}, |
|
"german": {"num_workers": 1}, |
|
"korean": {"num_workers": 1}, |
|
"japan": {"num_workers": 1}, |
|
} |
|
CONCURRENCY_LIMIT = 8 |
|
|
|
class PaddleOCRModelManager(object): |
|
def __init__(self, |
|
num_workers, |
|
model_factory): |
|
super().__init__() |
|
self._model_factory = model_factory |
|
self._queue = Queue() |
|
self._workers = [] |
|
self._model_initialized_event = Event() |
|
for _ in range(num_workers): |
|
worker = Thread(target=self._worker, daemon=False) |
|
worker.start() |
|
self._model_initialized_event.wait() |
|
self._model_initialized_event.clear() |
|
self._workers.append(worker) |
|
|
|
def infer(self, *args, **kwargs): |
|
|
|
result_queue = Queue(maxsize=1) |
|
self._queue.put((args, kwargs, result_queue)) |
|
success, payload = result_queue.get() |
|
if success: |
|
return payload |
|
else: |
|
raise payload |
|
|
|
def close(self): |
|
for _ in self._workers: |
|
self._queue.put(None) |
|
for worker in self._workers: |
|
worker.join() |
|
|
|
def _worker(self): |
|
model = self._model_factory() |
|
self._model_initialized_event.set() |
|
while True: |
|
item = self._queue.get() |
|
if item is None: |
|
break |
|
args, kwargs, result_queue = item |
|
try: |
|
result = model.ocr(*args, **kwargs) |
|
result_queue.put((True, result)) |
|
except Exception as e: |
|
result_queue.put((False, e)) |
|
finally: |
|
self._queue.task_done() |
|
|
|
def create_model(lang): |
|
return PaddleOCR(lang=lang, use_angle_cls=True, use_gpu=False) |
|
|
|
model_managers = {} |
|
for lang, config in LANG_CONFIG.items(): |
|
model_manager = PaddleOCRModelManager(config["num_workers"], functools.partial(create_model, lang=lang)) |
|
model_managers[lang] = model_manager |
|
|
|
def close_model_managers(): |
|
for manager in model_managers.values(): |
|
manager.close() |
|
|
|
|
|
atexit.register(close_model_managers) |
|
|
|
def inference(img, lang): |
|
ocr = model_managers[lang] |
|
result = ocr.infer(img, cls=True)[0] |
|
textos_extraidos = herramientas.listaTextosExtraidos(result) |
|
|
|
|
|
nombre, apellido, identificacion = documentos.dni(textos_extraidos) |
|
|
|
print(f"Hola: {nombre}, {apellido} con identificación: {identificacion}") |
|
|
|
return { |
|
"nombre": nombre, |
|
"apellido": apellido, |
|
"identificacion": identificacion |
|
} |