import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") def paraphrase_text(input_text, num_return_sequences=3, num_beams=5): input_ids = tokenizer.encode("paraphrase: " + input_text, return_tensors="pt", truncation=True) outputs = model.generate( input_ids, max_length=256, num_beams=num_beams, num_return_sequences=num_return_sequences, no_repeat_ngram_size=2, early_stopping=True ) paraphrased_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] return paraphrased_texts iface = gr.Interface( fn=paraphrase_text, inputs=[ gr.Textbox(lines=5, placeholder="Enter text to paraphrase here..."), gr.Slider(1, 5, value=3, label="Number of paraphrases"), gr.Slider(1, 10, value=5, label="Beam search size") ], outputs=gr.Textbox(label="Paraphrased Outputs"), title="Paraphrasing with T5 Model", description="Enter text to see paraphrased versions.", ) iface.launch()