paraphrasing / app.py
Mohsen Dehghani
Create app.py
14d3d86 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
def paraphrase_text(input_text, num_return_sequences=3, num_beams=5):
input_ids = tokenizer.encode("paraphrase: " + input_text, return_tensors="pt", truncation=True)
outputs = model.generate(
input_ids,
max_length=256,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
no_repeat_ngram_size=2,
early_stopping=True
)
paraphrased_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
return paraphrased_texts
iface = gr.Interface(
fn=paraphrase_text,
inputs=[
gr.Textbox(lines=5, placeholder="Enter text to paraphrase here..."),
gr.Slider(1, 5, value=3, label="Number of paraphrases"),
gr.Slider(1, 10, value=5, label="Beam search size")
],
outputs=gr.Textbox(label="Paraphrased Outputs"),
title="Paraphrasing with T5 Model",
description="Enter text to see paraphrased versions.",
)
iface.launch()