Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") | |
def paraphrase_text(input_text, num_return_sequences=3, num_beams=5): | |
input_ids = tokenizer.encode("paraphrase: " + input_text, return_tensors="pt", truncation=True) | |
outputs = model.generate( | |
input_ids, | |
max_length=256, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
paraphrased_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] | |
return paraphrased_texts | |
iface = gr.Interface( | |
fn=paraphrase_text, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="Enter text to paraphrase here..."), | |
gr.Slider(1, 5, value=3, label="Number of paraphrases"), | |
gr.Slider(1, 10, value=5, label="Beam search size") | |
], | |
outputs=gr.Textbox(label="Paraphrased Outputs"), | |
title="Paraphrasing with T5 Model", | |
description="Enter text to see paraphrased versions.", | |
) | |
iface.launch() | |