Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import torch
|
|
6 |
from diffusers import FluxPipeline, AutoencoderKL
|
7 |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
8 |
import spaces
|
|
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
@@ -17,9 +18,12 @@ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfold
|
|
17 |
# pipe.to(torch.float16)
|
18 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
19 |
|
20 |
-
llm_client =
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
|
25 |
|
@@ -44,13 +48,16 @@ Don't write anything else except the character description in json format and do
|
|
44 |
world_description_prompt = "Generate a unique and random world description (Don't Write anything else except the world description)."
|
45 |
|
46 |
def get_random_world_description():
|
47 |
-
result = llm_client.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
)
|
53 |
-
return result[
|
54 |
|
55 |
def get_random_persona_description():
|
56 |
return ds.shuffle().select([100])[0]["persona"]
|
@@ -70,15 +77,18 @@ def infer_flux(character_json):
|
|
70 |
yield image
|
71 |
|
72 |
def generate_character(world_description, persona_description, progress=gr.Progress(track_tqdm=True)):
|
73 |
-
result = llm_client.
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
)
|
81 |
-
output = json.loads(result[
|
82 |
return output
|
83 |
|
84 |
app_description = """
|
|
|
6 |
from diffusers import FluxPipeline, AutoencoderKL
|
7 |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
8 |
import spaces
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
|
|
18 |
# pipe.to(torch.float16)
|
19 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
20 |
|
21 |
+
llm_client = InferenceClient(
|
22 |
+
provider="fireworks-ai",
|
23 |
+
api_key=os.environ["HF_TOKEN"],
|
24 |
+
)
|
25 |
+
|
26 |
+
completion = client
|
27 |
|
28 |
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
|
29 |
|
|
|
48 |
world_description_prompt = "Generate a unique and random world description (Don't Write anything else except the world description)."
|
49 |
|
50 |
def get_random_world_description():
|
51 |
+
result = llm_client.chat.completions.create(
|
52 |
+
model="Qwen/Qwen3-235B-A22B",
|
53 |
+
messages=[
|
54 |
+
{
|
55 |
+
"role": "user",
|
56 |
+
"content": world_description_prompt
|
57 |
+
}
|
58 |
+
],
|
59 |
)
|
60 |
+
return result.choices[0].message
|
61 |
|
62 |
def get_random_persona_description():
|
63 |
return ds.shuffle().select([100])[0]["persona"]
|
|
|
77 |
yield image
|
78 |
|
79 |
def generate_character(world_description, persona_description, progress=gr.Progress(track_tqdm=True)):
|
80 |
+
result = llm_client.chat.completions.create(
|
81 |
+
model="Qwen/Qwen3-235B-A22B",
|
82 |
+
messages=[
|
83 |
+
{
|
84 |
+
"role": "user",
|
85 |
+
"content": prompt_template.format(
|
86 |
+
persona_description=persona_description, world_description=world_description
|
87 |
+
)
|
88 |
+
}
|
89 |
+
],
|
90 |
)
|
91 |
+
output = json.loads(result.choices[0].message)
|
92 |
return output
|
93 |
|
94 |
app_description = """
|