Update app.py
Browse files
app.py
CHANGED
@@ -3,102 +3,66 @@ from snac import SNAC
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
|
7 |
from dotenv import load_dotenv
|
8 |
-
import gc # Import garbage collector for memory management
|
9 |
-
|
10 |
load_dotenv()
|
11 |
|
12 |
-
# --- Global Variables ---
|
13 |
-
current_model = None
|
14 |
-
current_tokenizer = None
|
15 |
-
current_model_name = None
|
16 |
-
model_choices = ["Mohaddz/orpheus-3b-0.1-ft-ar", "Mohaddz/orpheus-arabic-exp"]
|
17 |
-
default_model_name = "Mohaddz/orpheus-3b-0.1-ft-ar" # Or your preferred default
|
18 |
-
# --- End Global Variables ---
|
19 |
-
|
20 |
# Check if CUDA is available
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
-
dtype = torch.bfloat16 if device == "cuda" else torch.float32 # Use float32 on CPU
|
23 |
|
24 |
print("Loading SNAC model...")
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
if device == "cuda":
|
52 |
-
torch.cuda.empty_cache() # Clear CUDA cache
|
53 |
-
|
54 |
-
print(f"Loading Orpheus model: {model_name_to_load}...")
|
55 |
-
try:
|
56 |
-
# Use from_pretrained which handles download and caching
|
57 |
-
new_model = AutoModelForCausalLM.from_pretrained(model_name_to_load, torch_dtype=dtype)
|
58 |
-
new_model.to(device)
|
59 |
-
new_tokenizer = AutoTokenizer.from_pretrained(model_name_to_load)
|
60 |
-
|
61 |
-
# Update global variables
|
62 |
-
current_model = new_model
|
63 |
-
current_tokenizer = new_tokenizer
|
64 |
-
current_model_name = model_name_to_load
|
65 |
-
|
66 |
-
print(f"Orpheus model {current_model_name} loaded successfully to {device}")
|
67 |
-
gr.Info(f"Model {current_model_name} loaded.")
|
68 |
-
return f"Model {current_model_name} loaded." # Return status message
|
69 |
-
|
70 |
-
except Exception as e:
|
71 |
-
print(f"Error loading model {model_name_to_load}: {e}")
|
72 |
-
# Reset globals if loading fails
|
73 |
-
current_model = None
|
74 |
-
current_tokenizer = None
|
75 |
-
current_model_name = None
|
76 |
-
gr.Warning(f"Failed to load model {model_name_to_load}. Please try again or select another model.")
|
77 |
-
return f"Error loading {model_name_to_load}." # Return status message
|
78 |
-
# --- End Model Loading Function ---
|
79 |
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
# Process text prompt
|
82 |
-
def process_prompt(prompt, voice, device):
|
83 |
-
if current_tokenizer is None:
|
84 |
-
raise ValueError("Tokenizer not loaded.")
|
85 |
prompt = f"{voice}: {prompt}"
|
86 |
-
input_ids =
|
87 |
-
|
88 |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
89 |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
90 |
-
|
91 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
92 |
-
|
|
|
93 |
attention_mask = torch.ones_like(modified_input_ids)
|
94 |
-
|
95 |
return modified_input_ids.to(device), attention_mask.to(device)
|
96 |
|
97 |
-
# Parse output tokens to audio
|
98 |
def parse_output(generated_ids):
|
99 |
token_to_find = 128257
|
100 |
token_to_remove = 128258
|
101 |
-
|
102 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
103 |
|
104 |
if len(token_indices[1]) > 0:
|
@@ -117,23 +81,19 @@ def parse_output(generated_ids):
|
|
117 |
row_length = row.size(0)
|
118 |
new_length = (row_length // 7) * 7
|
119 |
trimmed_row = row[:new_length]
|
120 |
-
trimmed_row = [t - 128266 for t in trimmed_row]
|
121 |
code_lists.append(trimmed_row)
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
if not snac_model_instance or not code_list:
|
128 |
-
print("SNAC model not loaded or code list empty.")
|
129 |
-
return None
|
130 |
-
snac_device = next(snac_model_instance.parameters()).device
|
131 |
-
|
132 |
layer_1 = []
|
133 |
layer_2 = []
|
134 |
layer_3 = []
|
135 |
-
|
136 |
-
for i in range(num_frames):
|
137 |
layer_1.append(code_list[7*i])
|
138 |
layer_2.append(code_list[7*i+1]-4096)
|
139 |
layer_3.append(code_list[7*i+2]-(2*4096))
|
@@ -141,190 +101,137 @@ def redistribute_codes(code_list, snac_model_instance):
|
|
141 |
layer_2.append(code_list[7*i+4]-(4*4096))
|
142 |
layer_3.append(code_list[7*i+5]-(5*4096))
|
143 |
layer_3.append(code_list[7*i+6]-(6*4096))
|
144 |
-
|
145 |
-
|
146 |
-
print("No valid frames found in code list.")
|
147 |
-
return None
|
148 |
-
|
149 |
codes = [
|
150 |
-
torch.tensor(layer_1, device=
|
151 |
-
torch.tensor(layer_2, device=
|
152 |
-
torch.tensor(layer_3, device=
|
153 |
]
|
|
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
audio_hat = snac_model_instance.decode(codes)
|
157 |
-
return audio_hat.detach().squeeze().cpu().numpy()
|
158 |
-
|
159 |
-
|
160 |
-
# Main generation function (Uses global model now)
|
161 |
@spaces.GPU()
|
162 |
-
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress(
|
163 |
-
global current_model, device # Access globals
|
164 |
-
|
165 |
-
if current_model is None or current_tokenizer is None:
|
166 |
-
gr.Warning("Orpheus model not loaded. Please select a model and wait for it to load.")
|
167 |
-
return None
|
168 |
-
if snac_model is None:
|
169 |
-
gr.Warning("SNAC vocoder model failed to load. Cannot generate audio.")
|
170 |
-
return None
|
171 |
if not text.strip():
|
172 |
-
gr.Info("Please enter some text.")
|
173 |
return None
|
174 |
-
|
175 |
try:
|
176 |
progress(0.1, "Processing text...")
|
177 |
-
input_ids, attention_mask = process_prompt(text, voice, device)
|
178 |
-
|
179 |
progress(0.3, "Generating speech tokens...")
|
180 |
with torch.no_grad():
|
181 |
-
|
182 |
-
generated_ids = current_model.generate(
|
183 |
input_ids=input_ids,
|
184 |
attention_mask=attention_mask,
|
185 |
max_new_tokens=max_new_tokens,
|
186 |
do_sample=True,
|
187 |
-
temperature=
|
188 |
top_p=top_p,
|
189 |
repetition_penalty=repetition_penalty,
|
190 |
num_return_sequences=1,
|
191 |
-
eos_token_id=128258,
|
192 |
-
pad_token_id=current_tokenizer.pad_token_id if current_tokenizer.pad_token_id is not None else current_tokenizer.eos_token_id # Use tokenizer's pad/eos token
|
193 |
)
|
194 |
-
|
195 |
progress(0.6, "Processing speech tokens...")
|
196 |
code_list = parse_output(generated_ids)
|
197 |
-
|
198 |
progress(0.8, "Converting to audio...")
|
199 |
audio_samples = redistribute_codes(code_list, snac_model)
|
200 |
-
|
201 |
-
if audio_samples is None:
|
202 |
-
gr.Warning("Failed to generate audio samples.")
|
203 |
-
return None
|
204 |
-
|
205 |
return (24000, audio_samples) # Return sample rate and audio
|
206 |
except Exception as e:
|
207 |
print(f"Error generating speech: {e}")
|
208 |
-
import traceback
|
209 |
-
traceback.print_exc() # Print full traceback for debugging
|
210 |
-
gr.Error(f"An error occurred during generation: {e}")
|
211 |
return None
|
212 |
|
213 |
-
# --- Load Default Model at Startup ---
|
214 |
-
# Moved initial loading to happen *before* launching the UI
|
215 |
-
# This ensures a model is ready when the interface appears.
|
216 |
-
print("Loading default model...")
|
217 |
-
initial_status = load_model_and_tokenizer(default_model_name)
|
218 |
-
print(initial_status)
|
219 |
-
# --- End Load Default Model ---
|
220 |
-
|
221 |
# Examples for the UI
|
222 |
examples = [
|
223 |
-
|
224 |
-
["
|
225 |
-
["
|
226 |
-
# ["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200] # Keep or remove English examples
|
227 |
]
|
228 |
|
229 |
-
# Available voices
|
230 |
-
|
231 |
-
VOICES = ["tara", "dan", "josh", "emma"] # Adjust as needed
|
232 |
|
233 |
# Create Gradio interface
|
234 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
235 |
gr.Markdown("""
|
236 |
-
# 🎵 Orpheus Text-to-Speech
|
237 |
-
Enter your text below and hear it converted to natural-sounding speech.
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
choices=model_choices,
|
245 |
-
value=current_model_name, # Default to the loaded model
|
246 |
-
label="Select Fine-Tuned Model",
|
247 |
-
interactive=True
|
248 |
-
)
|
249 |
-
# Status Textbox (Optional)
|
250 |
-
status_display = gr.Textbox(label="Model Status", value=initial_status, interactive=False)
|
251 |
-
|
252 |
-
|
253 |
with gr.Row():
|
254 |
with gr.Column(scale=3):
|
255 |
text_input = gr.Textbox(
|
256 |
-
label="Text to speak
|
257 |
-
placeholder="
|
258 |
-
lines=5
|
259 |
-
text_align="right" # Align text right for Arabic
|
260 |
)
|
261 |
voice = gr.Dropdown(
|
262 |
-
choices=VOICES,
|
263 |
-
value="tara",
|
264 |
-
label="Voice
|
265 |
)
|
266 |
-
|
267 |
-
with gr.Accordion("Advanced Settings
|
268 |
temperature = gr.Slider(
|
269 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
270 |
-
label="Temperature
|
271 |
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
272 |
)
|
273 |
top_p = gr.Slider(
|
274 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
275 |
-
label="Top P",
|
276 |
info="Nucleus sampling threshold"
|
277 |
)
|
278 |
repetition_penalty = gr.Slider(
|
279 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
280 |
-
label="Repetition Penalty
|
281 |
info="Higher values discourage repetitive patterns"
|
282 |
)
|
283 |
max_new_tokens = gr.Slider(
|
284 |
minimum=100, maximum=2000, value=1200, step=100,
|
285 |
-
label="Max Length
|
286 |
info="Maximum length of generated audio (in tokens)"
|
287 |
)
|
288 |
-
|
289 |
with gr.Row():
|
290 |
-
submit_btn = gr.Button("Generate Speech
|
291 |
-
clear_btn = gr.Button("Clear
|
292 |
-
|
293 |
with gr.Column(scale=2):
|
294 |
-
audio_output = gr.Audio(label="Generated Speech
|
295 |
-
|
296 |
# Set up examples
|
297 |
gr.Examples(
|
298 |
examples=examples,
|
299 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
300 |
outputs=audio_output,
|
301 |
-
fn=generate_speech,
|
302 |
-
cache_examples=
|
303 |
-
)
|
304 |
-
|
305 |
-
# --- Event Handlers ---
|
306 |
-
# Trigger model loading when dropdown changes
|
307 |
-
model_selector.change(
|
308 |
-
fn=load_model_and_tokenizer,
|
309 |
-
inputs=[model_selector],
|
310 |
-
outputs=[status_display] # Update status display
|
311 |
)
|
312 |
-
|
313 |
-
#
|
314 |
submit_btn.click(
|
315 |
fn=generate_speech,
|
316 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
317 |
outputs=audio_output
|
318 |
)
|
319 |
-
|
320 |
-
# Clear button click
|
321 |
clear_btn.click(
|
322 |
fn=lambda: (None, None),
|
323 |
inputs=[],
|
324 |
outputs=[text_input, audio_output]
|
325 |
)
|
326 |
-
# --- End Event Handlers ---
|
327 |
|
328 |
# Launch the app
|
329 |
if __name__ == "__main__":
|
330 |
-
demo.queue().launch(share=False
|
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
from dotenv import load_dotenv
|
|
|
|
|
8 |
load_dotenv()
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Check if CUDA is available
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
|
13 |
print("Loading SNAC model...")
|
14 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
15 |
+
snac_model = snac_model.to(device)
|
16 |
+
|
17 |
+
model_name = "Mohaddz/orpheus-arabic-exp"
|
18 |
+
|
19 |
+
# Download only model config and safetensors
|
20 |
+
snapshot_download(
|
21 |
+
repo_id=model_name,
|
22 |
+
allow_patterns=[
|
23 |
+
"config.json",
|
24 |
+
"*.safetensors",
|
25 |
+
"model.safetensors.index.json",
|
26 |
+
],
|
27 |
+
ignore_patterns=[
|
28 |
+
"optimizer.pt",
|
29 |
+
"pytorch_model.bin",
|
30 |
+
"training_args.bin",
|
31 |
+
"scheduler.pt",
|
32 |
+
"tokenizer.json",
|
33 |
+
"tokenizer_config.json",
|
34 |
+
"special_tokens_map.json",
|
35 |
+
"vocab.json",
|
36 |
+
"merges.txt",
|
37 |
+
"tokenizer.*"
|
38 |
+
]
|
39 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
42 |
+
model.to(device)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
print(f"Orpheus model loaded to {device}")
|
45 |
|
46 |
+
# Process text prompt
|
47 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
|
|
|
|
48 |
prompt = f"{voice}: {prompt}"
|
49 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
50 |
+
|
51 |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
52 |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
53 |
+
|
54 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
55 |
+
|
56 |
+
# No padding needed for single input
|
57 |
attention_mask = torch.ones_like(modified_input_ids)
|
58 |
+
|
59 |
return modified_input_ids.to(device), attention_mask.to(device)
|
60 |
|
61 |
+
# Parse output tokens to audio
|
62 |
def parse_output(generated_ids):
|
63 |
token_to_find = 128257
|
64 |
token_to_remove = 128258
|
65 |
+
|
66 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
67 |
|
68 |
if len(token_indices[1]) > 0:
|
|
|
81 |
row_length = row.size(0)
|
82 |
new_length = (row_length // 7) * 7
|
83 |
trimmed_row = row[:new_length]
|
84 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
85 |
code_lists.append(trimmed_row)
|
86 |
+
|
87 |
+
return code_lists[0] # Return just the first one for single sample
|
88 |
|
89 |
+
# Redistribute codes for audio generation
|
90 |
+
def redistribute_codes(code_list, snac_model):
|
91 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
92 |
+
|
|
|
|
|
|
|
|
|
|
|
93 |
layer_1 = []
|
94 |
layer_2 = []
|
95 |
layer_3 = []
|
96 |
+
for i in range((len(code_list)+1)//7):
|
|
|
97 |
layer_1.append(code_list[7*i])
|
98 |
layer_2.append(code_list[7*i+1]-4096)
|
99 |
layer_3.append(code_list[7*i+2]-(2*4096))
|
|
|
101 |
layer_2.append(code_list[7*i+4]-(4*4096))
|
102 |
layer_3.append(code_list[7*i+5]-(5*4096))
|
103 |
layer_3.append(code_list[7*i+6]-(6*4096))
|
104 |
+
|
105 |
+
# Move tensors to the same device as the SNAC model
|
|
|
|
|
|
|
106 |
codes = [
|
107 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
108 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
109 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
110 |
]
|
111 |
+
|
112 |
+
audio_hat = snac_model.decode(codes)
|
113 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
114 |
|
115 |
+
# Main generation function
|
|
|
|
|
|
|
|
|
|
|
116 |
@spaces.GPU()
|
117 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
if not text.strip():
|
|
|
119 |
return None
|
120 |
+
|
121 |
try:
|
122 |
progress(0.1, "Processing text...")
|
123 |
+
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
124 |
+
|
125 |
progress(0.3, "Generating speech tokens...")
|
126 |
with torch.no_grad():
|
127 |
+
generated_ids = model.generate(
|
|
|
128 |
input_ids=input_ids,
|
129 |
attention_mask=attention_mask,
|
130 |
max_new_tokens=max_new_tokens,
|
131 |
do_sample=True,
|
132 |
+
temperature=temperature,
|
133 |
top_p=top_p,
|
134 |
repetition_penalty=repetition_penalty,
|
135 |
num_return_sequences=1,
|
136 |
+
eos_token_id=128258,
|
|
|
137 |
)
|
138 |
+
|
139 |
progress(0.6, "Processing speech tokens...")
|
140 |
code_list = parse_output(generated_ids)
|
141 |
+
|
142 |
progress(0.8, "Converting to audio...")
|
143 |
audio_samples = redistribute_codes(code_list, snac_model)
|
144 |
+
|
|
|
|
|
|
|
|
|
145 |
return (24000, audio_samples) # Return sample rate and audio
|
146 |
except Exception as e:
|
147 |
print(f"Error generating speech: {e}")
|
|
|
|
|
|
|
148 |
return None
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# Examples for the UI
|
151 |
examples = [
|
152 |
+
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
153 |
+
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
154 |
+
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
|
|
|
155 |
]
|
156 |
|
157 |
+
# Available voices
|
158 |
+
VOICES = ["tara", "dan", "josh", "emma"]
|
|
|
159 |
|
160 |
# Create Gradio interface
|
161 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
162 |
gr.Markdown("""
|
163 |
+
# 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
|
164 |
+
Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
|
165 |
+
|
166 |
+
## Tips for better prompts:
|
167 |
+
- Add paralinguistic elements like `<chuckle>`, `<sigh>`, or `uhm` for more human-like speech.
|
168 |
+
- Longer text prompts generally work better than very short phrases
|
169 |
+
- Adjust the temperature slider for more varied (higher) or consistent (lower) speech patterns
|
170 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
with gr.Row():
|
172 |
with gr.Column(scale=3):
|
173 |
text_input = gr.Textbox(
|
174 |
+
label="Text to speak",
|
175 |
+
placeholder="Enter your text here...",
|
176 |
+
lines=5
|
|
|
177 |
)
|
178 |
voice = gr.Dropdown(
|
179 |
+
choices=VOICES,
|
180 |
+
value="tara",
|
181 |
+
label="Voice"
|
182 |
)
|
183 |
+
|
184 |
+
with gr.Accordion("Advanced Settings", open=False):
|
185 |
temperature = gr.Slider(
|
186 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
187 |
+
label="Temperature",
|
188 |
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
189 |
)
|
190 |
top_p = gr.Slider(
|
191 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
192 |
+
label="Top P",
|
193 |
info="Nucleus sampling threshold"
|
194 |
)
|
195 |
repetition_penalty = gr.Slider(
|
196 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
197 |
+
label="Repetition Penalty",
|
198 |
info="Higher values discourage repetitive patterns"
|
199 |
)
|
200 |
max_new_tokens = gr.Slider(
|
201 |
minimum=100, maximum=2000, value=1200, step=100,
|
202 |
+
label="Max Length",
|
203 |
info="Maximum length of generated audio (in tokens)"
|
204 |
)
|
205 |
+
|
206 |
with gr.Row():
|
207 |
+
submit_btn = gr.Button("Generate Speech", variant="primary")
|
208 |
+
clear_btn = gr.Button("Clear")
|
209 |
+
|
210 |
with gr.Column(scale=2):
|
211 |
+
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
212 |
+
|
213 |
# Set up examples
|
214 |
gr.Examples(
|
215 |
examples=examples,
|
216 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
217 |
outputs=audio_output,
|
218 |
+
fn=generate_speech,
|
219 |
+
cache_examples=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
221 |
+
|
222 |
+
# Set up event handlers
|
223 |
submit_btn.click(
|
224 |
fn=generate_speech,
|
225 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
226 |
outputs=audio_output
|
227 |
)
|
228 |
+
|
|
|
229 |
clear_btn.click(
|
230 |
fn=lambda: (None, None),
|
231 |
inputs=[],
|
232 |
outputs=[text_input, audio_output]
|
233 |
)
|
|
|
234 |
|
235 |
# Launch the app
|
236 |
if __name__ == "__main__":
|
237 |
+
demo.queue().launch(share=False, ssr_mode=False)
|