Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr # not used here, but kept if needed later
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import scipy.io.wavfile as wavfile
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from transformers import pipeline
|
7 |
+
from collections import Counter
|
8 |
+
import inflect
|
9 |
+
|
10 |
+
# # Paths for your models
|
11 |
+
# tts_model_path = ("../Models/models--kakao-enterprise--vits-ljs/snapshots/"
|
12 |
+
# "3bcb8321394f671bd948ebf0d086d694dda95464")
|
13 |
+
# narrator = pipeline("text-to-speech", model=tts_model_path)
|
14 |
+
|
15 |
+
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
|
16 |
+
|
17 |
+
# obj_detector_path = ("../Models/models--facebook--detr-resnet-50/snapshots/"
|
18 |
+
# "1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
|
19 |
+
# obj_detector = pipeline("object-detection", model=obj_detector_path)
|
20 |
+
|
21 |
+
obj_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
22 |
+
|
23 |
+
def generate_audio(text, output_path="finetuned_output.wav"):
|
24 |
+
narrated = narrator(text)
|
25 |
+
|
26 |
+
audio = narrated["audio"]
|
27 |
+
sampling_rate = narrated["sampling_rate"]
|
28 |
+
|
29 |
+
# Convert to int16 if needed
|
30 |
+
if audio.dtype != np.int16:
|
31 |
+
audio = (audio * 32767).astype(np.int16)
|
32 |
+
|
33 |
+
wavfile.write(output_path, sampling_rate, audio)
|
34 |
+
return output_path
|
35 |
+
|
36 |
+
def read_objects(detections: list[dict]) -> str:
|
37 |
+
if not detections:
|
38 |
+
return "No objects were detected in this picture."
|
39 |
+
|
40 |
+
labels = [det['label'] for det in detections]
|
41 |
+
label_counts = Counter(labels)
|
42 |
+
|
43 |
+
p = inflect.engine()
|
44 |
+
phrases = []
|
45 |
+
for label, count in label_counts.items():
|
46 |
+
word = p.plural(label, count)
|
47 |
+
phrases.append(f"{count} {word}")
|
48 |
+
|
49 |
+
if len(phrases) == 1:
|
50 |
+
result = phrases[0]
|
51 |
+
else:
|
52 |
+
result = ", ".join(phrases[:-1]) + " and " + phrases[-1]
|
53 |
+
|
54 |
+
return f"This picture contains {result}."
|
55 |
+
|
56 |
+
def draw_detected_objects(image, detections, score_threshold=0.5):
|
57 |
+
annotated_image = image.copy()
|
58 |
+
draw = ImageDraw.Draw(annotated_image)
|
59 |
+
|
60 |
+
try:
|
61 |
+
font = ImageFont.truetype("arial.ttf", size=14)
|
62 |
+
except:
|
63 |
+
font = ImageFont.load_default()
|
64 |
+
|
65 |
+
for item in detections:
|
66 |
+
score = item["score"]
|
67 |
+
if score < score_threshold:
|
68 |
+
continue
|
69 |
+
|
70 |
+
box = item["box"]
|
71 |
+
label = item["label"]
|
72 |
+
text = f"{label} ({score:.2f})"
|
73 |
+
|
74 |
+
text_bbox = font.getbbox(text)
|
75 |
+
text_width = text_bbox[2] - text_bbox[0]
|
76 |
+
text_height = text_bbox[3] - text_bbox[1]
|
77 |
+
|
78 |
+
draw.rectangle(
|
79 |
+
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
|
80 |
+
outline="red", width=3
|
81 |
+
)
|
82 |
+
|
83 |
+
draw.rectangle(
|
84 |
+
[(box["xmin"], box["ymin"] - text_height),
|
85 |
+
(box["xmin"] + text_width, box["ymin"])],
|
86 |
+
fill="red"
|
87 |
+
)
|
88 |
+
draw.text(
|
89 |
+
(box["xmin"], box["ymin"] - text_height),
|
90 |
+
text, fill="white", font=font
|
91 |
+
)
|
92 |
+
|
93 |
+
return annotated_image
|
94 |
+
|
95 |
+
def detect_image(image):
|
96 |
+
raw_image = image
|
97 |
+
output = obj_detector(raw_image)
|
98 |
+
processed_image = draw_detected_objects(raw_image, output)
|
99 |
+
natural_text = read_objects(output)
|
100 |
+
processed_audio = generate_audio(natural_text)
|
101 |
+
return processed_image, processed_audio
|
102 |
+
|
103 |
+
gr.close_all()
|
104 |
+
|
105 |
+
demo = gr.Interface(fn=detect_image,
|
106 |
+
inputs=[gr.Image(label="Select Image", type="pil")],
|
107 |
+
outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")],
|
108 |
+
title="@GenAI Project 7: Object Detector with Audio",
|
109 |
+
description="THIS APPLICATION IS USED TO DETECT, HIGHLIGHT THE IMAGE AND ALSO GIVES AUDIO DESCRIPTION.")
|
110 |
+
demo.launch()
|
111 |
+
|
112 |
+
|