Spaces:
Sleeping
Sleeping
File size: 6,679 Bytes
337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 337fbc2 9c85f16 80e3f59 337fbc2 80e3f59 337fbc2 80e3f59 337fbc2 5b650c7 337fbc2 9c85f16 337fbc2 74e36b2 337fbc2 74e36b2 337fbc2 74e36b2 337fbc2 80e3f59 337fbc2 427ea2c 337fbc2 74e36b2 337fbc2 9c85f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import re
import gradio as gr
from gliner import GLiNER
from cerberus import Validator
from transformers import AutoTokenizer
# ----------------------------------------------------------------------------
# Load model + labels
# ----------------------------------------------------------------------------
model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
with open("labels.txt", "r", encoding="utf-8") as f:
labels = [line.strip() for line in f.readlines()]
MAX_TOKENS = 512 # безопасный лимит токенов на один фрагмент
# ----------------------------------------------------------------------------
# Simple Cerberus validation for incoming data
# ----------------------------------------------------------------------------
schema = {
"text": {
"type": "string",
"empty": False
}
}
validator = Validator(schema)
def validate_input(data: dict) -> str:
if not validator.validate(data):
raise ValueError(f"Invalid input data. Errors: {validator.errors}")
return data["text"]
# ----------------------------------------------------------------------------
# Chunking + Anonymization logic
# ----------------------------------------------------------------------------
def split_text_into_chunks(text, max_tokens=MAX_TOKENS):
words = text.split()
chunks = []
chunk = []
chunk_token_count = 0
current_offset = 0
for word in words:
token_count = len(tokenizer.tokenize(word))
if chunk_token_count + token_count > max_tokens:
chunk_text = ' '.join(chunk)
chunks.append((chunk_text, current_offset))
current_offset += len(chunk_text) + 1
chunk = [word]
chunk_token_count = token_count
else:
chunk.append(word)
chunk_token_count += token_count
if chunk:
chunk_text = ' '.join(chunk)
chunks.append((chunk_text, current_offset))
return chunks
def anonymize_text_long(text):
chunks = split_text_into_chunks(text)
full_anonymized = ""
global_entity_map = {}
for chunk_text, _ in chunks:
entities = model.predict_entities(chunk_text, labels=labels, threshold=0.2)
entities.sort(key=lambda e: e['start'])
anonymized_chunk = ""
next_start = 0
for entity in entities:
label = entity['label'].replace(" ", "_").upper()
original_text = entity['text']
start_idx, end_idx = entity['start'], entity['end']
if label not in global_entity_map:
global_entity_map[label] = [original_text]
idx = 1
else:
if original_text in global_entity_map[label]:
idx = global_entity_map[label].index(original_text) + 1
else:
global_entity_map[label].append(original_text)
idx = len(global_entity_map[label])
anonymized_chunk += chunk_text[next_start:start_idx]
anonymized_chunk += f"<PII_{label}_{idx}>"
next_start = end_idx
anonymized_chunk += chunk_text[next_start:]
full_anonymized += anonymized_chunk + " "
return full_anonymized.strip(), global_entity_map
# ----------------------------------------------------------------------------
# De-anonymization logic
# ----------------------------------------------------------------------------
def deanonymize_text(anonymized_response, entity_map):
def replace_match(match):
label = match.group(1)
idx_str = match.group(2)
idx = int(idx_str) - 1
if label in entity_map and 0 <= idx < len(entity_map[label]):
return entity_map[label][idx]
return match.group(0)
pattern = r"<PII_(\w+)_(\d+)>"
return re.sub(pattern, replace_match, anonymized_response)
# ----------------------------------------------------------------------------
# Gradio Interface
# ----------------------------------------------------------------------------
def anonymize_fn(original_text):
data = {"text": original_text}
try:
user_text = validate_input(data)
except ValueError as e:
return "", {}, f"Validation error: {str(e)}"
anonymized, entities = anonymize_text_long(user_text)
return anonymized, entities, "Успешно анонимизировано!"
def deanonymize_fn(anonymized_llm_response, entity_map):
if not anonymized_llm_response.strip():
return "", "Вставьте анонимизированный текст."
if not entity_map:
return "", "No entity map found; anonymize some text first."
result = deanonymize_text(anonymized_llm_response, entity_map)
return result, "Успешно деанонимизировано!"
md_text = """# Анонимизатор психотерапевтических сессий
Вставьте текст в раздел \"Исходный текст\", чтобы анонимизировать сензитивные данные.
"""
with gr.Blocks() as demo:
gr.Markdown(md_text)
with gr.Row():
with gr.Column():
original_text = gr.Textbox(
lines=6, label="Исходный текст (анонимизировать)"
)
anonymized_text = gr.Textbox(
lines=6, label="Анонимизированный текст", interactive=False
)
button_anon = gr.Button("Анонимизировать")
entity_map_state = gr.State()
message_out = gr.Textbox(label="Status", interactive=False)
button_anon.click(
anonymize_fn,
inputs=[original_text],
outputs=[anonymized_text, entity_map_state, message_out]
)
with gr.Column():
anonymized_llm_response = gr.Textbox(
lines=6, label="Анонимизированная сессия (вставить)"
)
deanonymized_text = gr.Textbox(
lines=6, label="Деанонимизированная сессия", interactive=False
)
button_deanon = gr.Button("Деанонимизировать")
message_out_de = gr.Textbox(label="Status", interactive=False)
button_deanon.click(
deanonymize_fn,
inputs=[anonymized_llm_response, entity_map_state],
outputs=[deanonymized_text, message_out_de]
)
if __name__ == "__main__":
demo.launch() |