Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,239 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import transformers
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
os.environ['HF_HOME'] = '/data/hf_home'
|
8 |
+
os.environ['TRANSFORMERS_CACHE'] = '/data/transformers_cache'
|
9 |
+
|
10 |
+
def process_vision_info(messages):
|
11 |
+
image_inputs = []
|
12 |
+
video_inputs = []
|
13 |
+
for message in messages:
|
14 |
+
if message["role"] == "user":
|
15 |
+
content = message["content"]
|
16 |
+
for item in content:
|
17 |
+
if item["type"] == "image":
|
18 |
+
image_inputs.append(item["image"])
|
19 |
+
elif item["type"] == "video":
|
20 |
+
video_inputs.append(item["video"])
|
21 |
+
return image_inputs, video_inputs
|
22 |
+
|
23 |
+
print("Loading text model (Qwen/Qwen2.5-7B)...")
|
24 |
+
text_model_loaded = False
|
25 |
+
text_model_error = ""
|
26 |
+
try:
|
27 |
+
text_model = transformers.AutoModelForCausalLM.from_pretrained(
|
28 |
+
"Qwen/Qwen2.5-7B",
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
device_map="auto"
|
31 |
)
|
32 |
+
text_tokenizer = transformers.AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B")
|
33 |
+
text_model_loaded = True
|
34 |
+
print("Text model loaded successfully.")
|
35 |
+
except Exception as e:
|
36 |
+
text_model_error = str(e)
|
37 |
+
print(f"Error loading text model: {text_model_error}")
|
38 |
+
text_model, text_tokenizer = None, None
|
39 |
+
|
40 |
+
print("Loading Vision-Language model (Qwen/Qwen2.5-VL-7B-Instruct)...")
|
41 |
+
vl_model_loaded = False
|
42 |
+
vl_model_error = ""
|
43 |
+
try:
|
44 |
+
vl_model = transformers.Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
45 |
+
"Qwen/Qwen2.5-VL-7B-Instruct",
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
device_map="auto"
|
48 |
)
|
49 |
+
vl_processor = transformers.AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
50 |
+
vl_model_loaded = True
|
51 |
+
print("Vision-Language model loaded successfully.")
|
52 |
+
except Exception as e:
|
53 |
+
vl_model_error = str(e)
|
54 |
+
print(f"Error loading Vision-Language model: {vl_model_error}")
|
55 |
+
vl_model, vl_processor = None, None
|
56 |
+
|
57 |
+
def visualize_text_token_probabilities(text: str):
|
58 |
+
if not text_model_loaded:
|
59 |
+
return [(f"Text Model failed to load: {text_model_error}", None)]
|
60 |
+
if not text or not text.strip():
|
61 |
+
return [("Please enter some text to analyze.", None)]
|
62 |
+
|
63 |
+
try:
|
64 |
+
inputs = text_tokenizer([text], return_tensors="pt").to(text_model.device)
|
65 |
+
input_ids = inputs.input_ids
|
66 |
+
if input_ids.shape[1] < 2:
|
67 |
+
token = text_tokenizer.decode(input_ids[0])
|
68 |
+
return [(token, None)]
|
69 |
+
|
70 |
+
inp = input_ids[:, :-1]
|
71 |
+
outp = input_ids[:, 1:].unsqueeze(-1)
|
72 |
+
with torch.no_grad():
|
73 |
+
logits = text_model(inp).logits.float()
|
74 |
+
|
75 |
+
all_probs = torch.softmax(logits, dim=-1)
|
76 |
+
chosen_probs = torch.gather(all_probs, dim=2, index=outp).squeeze(-1).cpu().numpy()[0]
|
77 |
+
|
78 |
+
highlighted_data = []
|
79 |
+
outp_tokens = input_ids[0, 1:].cpu().tolist()
|
80 |
+
|
81 |
+
first_token_str = text_tokenizer.decode([input_ids[0, 0].item()])
|
82 |
+
highlighted_data.append((first_token_str, None))
|
83 |
+
|
84 |
+
for token_id, prob in zip(outp_tokens, chosen_probs):
|
85 |
+
token_str = text_tokenizer.decode([token_id])
|
86 |
+
highlighted_data.append((token_str, float(prob)))
|
87 |
+
|
88 |
+
return highlighted_data
|
89 |
+
except Exception as e:
|
90 |
+
print(f"An error occurred during text processing: {e}")
|
91 |
+
return [(f"An error occurred: {str(e)}", None)]
|
92 |
+
|
93 |
+
def generate_and_visualize_vl_probabilities(image, prompt: str):
|
94 |
+
if not vl_model_loaded:
|
95 |
+
return [(f"Vision-Language Model failed to load: {vl_model_error}", None)]
|
96 |
+
if image is None or not prompt or not prompt.strip():
|
97 |
+
return [("Please upload an image and provide a text prompt.", None)]
|
98 |
+
|
99 |
+
try:
|
100 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt.strip()}]}]
|
101 |
+
text = vl_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
102 |
+
image_inputs, _ = process_vision_info(messages)
|
103 |
+
inputs = vl_processor(text=[text], images=image_inputs, padding=True, return_tensors="pt").to(vl_model.device)
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
generated_ids = vl_model.generate(**inputs, max_new_tokens=512)
|
107 |
+
|
108 |
+
input_token_len = inputs.input_ids.shape[1]
|
109 |
+
if generated_ids.shape[1] <= input_token_len:
|
110 |
+
return [("Model did not generate any new tokens.", None)]
|
111 |
+
|
112 |
+
original_mask = inputs.attention_mask
|
113 |
+
num_generated_tokens = generated_ids.shape[1] - input_token_len
|
114 |
+
generated_mask = torch.ones(
|
115 |
+
(1, num_generated_tokens),
|
116 |
+
dtype=original_mask.dtype,
|
117 |
+
device=original_mask.device
|
118 |
+
)
|
119 |
+
full_attention_mask = torch.cat([original_mask, generated_mask], dim=1)
|
120 |
+
|
121 |
+
with torch.no_grad():
|
122 |
+
outputs = vl_model(
|
123 |
+
input_ids=generated_ids,
|
124 |
+
pixel_values=inputs.get('pixel_values'),
|
125 |
+
image_grid_thw=inputs.get('image_grid_thw'),
|
126 |
+
attention_mask=full_attention_mask
|
127 |
+
)
|
128 |
+
logits = outputs.logits.float()
|
129 |
+
|
130 |
+
logits_of_generated_part = logits[:, input_token_len - 1:-1, :]
|
131 |
+
labels_of_generated_part = generated_ids[:, input_token_len:]
|
132 |
+
|
133 |
+
all_probs = torch.softmax(logits_of_generated_part, dim=-1)
|
134 |
+
chosen_probs = torch.gather(all_probs, 2, labels_of_generated_part.unsqueeze(-1)).squeeze(-1)
|
135 |
+
|
136 |
+
generated_token_ids_only = generated_ids[0, input_token_len:]
|
137 |
+
probs_list = chosen_probs[0].cpu().tolist()
|
138 |
+
highlighted_data = []
|
139 |
+
|
140 |
+
for token_id, prob in zip(generated_token_ids_only.tolist(), probs_list):
|
141 |
+
token_str = vl_processor.decode([token_id])
|
142 |
+
highlighted_data.append((token_str, float(prob)))
|
143 |
+
|
144 |
+
if not highlighted_data:
|
145 |
+
return [("Model did not generate any new tokens.", None)]
|
146 |
+
return highlighted_data
|
147 |
+
except Exception as e:
|
148 |
+
import traceback
|
149 |
+
traceback.print_exc()
|
150 |
+
print(f"An error occurred during VL processing: {e}")
|
151 |
+
return [(f"An error occurred: {str(e)}", None)]
|
152 |
+
|
153 |
+
text_en_example = """A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
|
154 |
+
The assistant first thinks about the reasoning process in the mind and then provides the user
|
155 |
+
with the answer. The reasoning process and answer are enclosed within <think> </think> and
|
156 |
+
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
|
157 |
+
<answer> answer here </answer>. User: What is 7 * 6? Assistant: <think> First, the user asked: "what is 7 * 6?" That's a multiplication problem. I need to calculate the product of 7 and 6.
|
158 |
+
|
159 |
+
I know my multiplication tables. 7 times 6 is 42. I can double-check: 7 × 6 means adding 7 six times: 7 + 7 + 7 + 7 + 7 + 7. Let's add that up: 7+7=14, 14+7=21, 21+7=28, 28+7=35, 35+7=42. Yes, that's 42.
|
160 |
+
|
161 |
+
I think that's fine. </think> <answer> 7 multiplied by 6 equals **42**.
|
162 |
+
|
163 |
+
If you have any more math questions or need an explanation, feel free to ask! 😊 </answer>"""
|
164 |
+
|
165 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Qwen2.5 Token Visualizer") as demo:
|
166 |
+
gr.Markdown(
|
167 |
+
"""
|
168 |
+
# Qwen2.5 Series Token Probability Visualizer
|
169 |
+
This tool visualizes token probabilities for both text and vision-language models from the Qwen2.5 series.
|
170 |
+
The color of each token represents its conditional probability.
|
171 |
+
**<span style="color:red">Red</span> means high probability** (the model was confident), and **<span style="color:black">White</span> means low probability** (the model was surprised).
|
172 |
+
"""
|
173 |
)
|
174 |
+
with gr.Tabs():
|
175 |
+
with gr.TabItem("Text Model (Qwen2.5-7B)"):
|
176 |
+
gr.Markdown("### Analyze Probabilities of Given Text")
|
177 |
+
with gr.Row():
|
178 |
+
text_input = gr.Textbox(
|
179 |
+
label="Input Text", lines=15, value=text_en_example,
|
180 |
+
placeholder="Enter text here to analyze..."
|
181 |
+
)
|
182 |
+
with gr.Row():
|
183 |
+
text_submit_btn = gr.Button("Visualize Probabilities", variant="primary")
|
184 |
+
|
185 |
+
text_output_highlight = gr.HighlightedText(
|
186 |
+
label="Token Probabilities (High: Red, Low: White)", show_legend=True,
|
187 |
+
combine_adjacent=False,
|
188 |
+
)
|
189 |
+
gr.Examples(
|
190 |
+
examples=[[text_en_example]], inputs=text_input, outputs=text_output_highlight,
|
191 |
+
fn=visualize_text_token_probabilities, cache_examples=False
|
192 |
+
)
|
193 |
+
text_submit_btn.click(
|
194 |
+
fn=visualize_text_token_probabilities, inputs=text_input, outputs=text_output_highlight,
|
195 |
+
api_name="visualize_text"
|
196 |
+
)
|
197 |
+
|
198 |
+
with gr.TabItem("Vision-Language Model (Qwen2.5-VL-7B-Instruct)"):
|
199 |
+
gr.Markdown("### Generate Text from Image and Visualize Probabilities")
|
200 |
+
with gr.Row():
|
201 |
+
with gr.Column():
|
202 |
+
vl_image_input = gr.Image(type="pil", label="Upload Image")
|
203 |
+
vl_text_input = gr.Textbox(label="Your Question", placeholder="e.g., Describe this image.")
|
204 |
+
vl_submit_btn = gr.Button("Generate and Visualize", variant="primary")
|
205 |
+
with gr.Column():
|
206 |
+
vl_output_highlight = gr.HighlightedText(
|
207 |
+
label="Generated Token Probabilities (High: Red, Low: White)", show_legend=True,
|
208 |
+
combine_adjacent=False,
|
209 |
+
)
|
210 |
+
|
211 |
+
gr.Examples(
|
212 |
+
examples=[["demo.jpeg", "Describe this image in detail."]],
|
213 |
+
inputs=[vl_image_input, vl_text_input],
|
214 |
+
outputs=vl_output_highlight,
|
215 |
+
fn=generate_and_visualize_vl_probabilities,
|
216 |
+
cache_examples=False
|
217 |
+
)
|
218 |
+
vl_submit_btn.click(
|
219 |
+
fn=generate_and_visualize_vl_probabilities, inputs=[vl_image_input, vl_text_input],
|
220 |
+
outputs=vl_output_highlight, api_name="visualize_vl_generation"
|
221 |
+
)
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
+
if not os.path.exists("demo.jpeg"):
|
225 |
+
try:
|
226 |
+
from PIL import Image, ImageDraw, ImageFont
|
227 |
+
img = Image.new('RGB', (400, 200), color = (73, 109, 137))
|
228 |
+
d = ImageDraw.Draw(img)
|
229 |
+
try:
|
230 |
+
font = ImageFont.truetype("arial.ttf", 20)
|
231 |
+
except IOError:
|
232 |
+
font = ImageFont.load_default()
|
233 |
+
d.text((10,10), "This is a demo image for Gradio.", font=font, fill=(255,255,0))
|
234 |
+
img.save("demo.jpeg")
|
235 |
+
print("Created a dummy 'demo.jpeg' for the example.")
|
236 |
+
except Exception as e:
|
237 |
+
print(f"Could not create a dummy image: {e}")
|
238 |
+
|
239 |
+
demo.queue().launch(share=True)
|