import os import threading from collections import defaultdict import gradio as gr from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, ) # Define model paths model_name_to_path = { "LeCarnet-3M": "MaxLSB/LeCarnet-3M", "LeCarnet-8M": "MaxLSB/LeCarnet-8M", "LeCarnet-21M": "MaxLSB/LeCarnet-21M", } # Load Hugging Face token hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] # Preload models and tokenizers loaded_models = defaultdict(dict) for name, path in model_name_to_path.items(): loaded_models[name]["tokenizer"] = AutoTokenizer.from_pretrained(path, token=hf_token) loaded_models[name]["model"] = AutoModelForCausalLM.from_pretrained(path, token=hf_token) loaded_models[name]["model"].eval() def respond(message, history, model_name, max_tokens, temperature, top_p): """ Generate a response from the selected model, streaming the output and updating chat history. Args: message (str): User's input message. history (list): Current chat history as list of (user_msg, bot_msg) tuples. model_name (str): Selected model name. max_tokens (int): Maximum number of tokens to generate. temperature (float): Sampling temperature. top_p (float): Top-p sampling parameter. Yields: list: Updated chat history with the user's message and streaming bot response. """ # Append user's message to history with an empty bot response history = history + [(message, "")] yield history # Display user's message immediately # Select tokenizer and model tokenizer = loaded_models[model_name]["tokenizer"] model = loaded_models[model_name]["model"] # Tokenize input inputs = tokenizer(message, return_tensors="pt") # Set up streaming streamer = TextIteratorStreamer( tokenizer, skip_prompt=False, skip_special_tokens=True, ) # Configure generation parameters generate_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, ) # Start generation in a background thread thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) thread.start() # Stream the response with model name prefix accumulated = f"**{model_name}:** " for new_text in streamer: accumulated += new_text history[-1] = (message, accumulated) yield history def submit(message, history, model_name, max_tokens, temperature, top_p): """ Handle form submission by calling respond and clearing the input box. Args: message (str): User's input message. history (list): Current chat history. model_name (str): Selected model name. max_tokens (int): Max tokens parameter. temperature (float): Temperature parameter. top_p (float): Top-p parameter. Yields: tuple: (updated chat history, cleared user input) """ for updated_history in respond(message, history, model_name, max_tokens, temperature, top_p): yield updated_history, "" def select_model(model_name, current_model): """ Update the selected model name when a model button is clicked. Args: model_name (str): The model name to select. current_model (str): The currently selected model. Returns: str: The newly selected model name. """ return model_name # Create the Gradio interface with Blocks with gr.Blocks(css=".gr-button {margin: 5px; width: 100%;} .gr-column {padding: 10px;}") as demo: # Title and description gr.Markdown("# LeCarnet") gr.Markdown("Select a model on the right and type a message to chat.") # Two-column layout with specific widths with gr.Row(): # Left column: Chat interface (80% width) with gr.Column(scale=4): chatbot = gr.Chatbot( avatar_images=(None, "media/le-carnet.png"), # User avatar: None, Bot avatar: Logo label="Chat", height=600, # Increase chat height for larger display ) user_input = gr.Textbox(placeholder="Type your message here...", label="Message") submit_btn = gr.Button("Send") # Right column: Model selection and parameters (20% width) with gr.Column(scale=1, min_width=200): # State to track selected model model_state = gr.State(value="LeCarnet-8M") # Model selection buttons gr.Markdown("**Select Model**") btn_3m = gr.Button("LeCarnet-3M") btn_8m = gr.Button("LeCarnet-8M") btn_21m = gr.Button("LeCarnet-21M") # Sliders for parameters max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens") temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p") # Example prompts examples = gr.Examples( examples=[ ["Il était une fois un petit garçon qui vivait dans un village paisible."], ["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], ["Il était une fois un petit lapin perdu"], ], inputs=user_input, ) # Event handling for submit button submit_btn.click( fn=submit, inputs=[user_input, chatbot, model_state, max_tokens, temperature, top_p], outputs=[chatbot, user_input], ) # Event handling for model selection buttons btn_3m.click( fn=select_model, inputs=[gr.State("LeCarnet-3M"), model_state], outputs=model_state, ) btn_8m.click( fn=select_model, inputs=[gr.State("LeCarnet-8M"), model_state], outputs=model_state, ) btn_21m.click( fn=select_model, inputs=[gr.State("LeCarnet-21M"), model_state], outputs=model_state, ) if __name__ == "__main__": demo.queue(default_concurrency_limit=10, max_size=10).launch(ssr_mode=False, max_threads=10)