import os import threading from collections import defaultdict import gradio as gr from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, ) # Define model paths model_name_to_path = { "LeCarnet-3M": "MaxLSB/LeCarnet-3M", "LeCarnet-8M": "MaxLSB/LeCarnet-8M", "LeCarnet-21M": "MaxLSB/LeCarnet-21M", } # Load Hugging Face token hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN", "default_token") # Use default to avoid errors # Preload models and tokenizers loaded_models = defaultdict(dict) for name, path in model_name_to_path.items(): try: loaded_models[name]["tokenizer"] = AutoTokenizer.from_pretrained(path, token=hf_token) loaded_models[name]["model"] = AutoModelForCausalLM.from_pretrained(path, token=hf_token) loaded_models[name]["model"].eval() except Exception as e: print(f"Error loading {name}: {str(e)}") def respond(message, history, model_name, max_tokens, temperature, top_p): history = history + [(message, "")] yield history tokenizer = loaded_models[model_name]["tokenizer"] model = loaded_models[model_name]["model"] inputs = tokenizer(message, return_tensors="pt") streamer = TextIteratorStreamer( tokenizer, skip_prompt=False, skip_special_tokens=True, ) generate_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, ) thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) thread.start() accumulated = "" # Removed model name prefix for new_text in streamer: accumulated += new_text history[-1] = (message, accumulated) yield history def submit(message, history, model_name, max_tokens, temperature, top_p): for updated_history in respond(message, history, model_name, max_tokens, temperature, top_p): yield updated_history, "" with gr.Blocks(css=".gr-button {margin: 5px; width: 100%;} .gr-column {padding: 10px;}") as demo: gr.Markdown("# LeCarnet") gr.Markdown("Select a model on the right and type a message to chat.") with gr.Row(): with gr.Column(scale=4): chatbot = gr.Chatbot( avatar_images=(None, "https://raw.githubusercontent.com/maxlsb/le-carnet/main/media/le-carnet.png"), # Using URL for reliability label="Chat", height=600, ) user_input = gr.Textbox(placeholder="Type your message here...", label="Message") submit_btn = gr.Button("Send") examples = gr.Examples( examples=[ ["Il était une fois un petit garçon qui vivait dans un village paisible."], ["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], ["Il était une fois un petit lapin perdu"], ], inputs=user_input, ) with gr.Column(scale=1, min_width=200): model_dropdown = gr.Dropdown( choices=["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"], value="LeCarnet-8M", label="Select Model" ) max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens") temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p") # Submit button click submit_btn.click( fn=submit, inputs=[user_input, chatbot, model_dropdown, max_tokens, temperature, top_p], outputs=[chatbot, user_input], ) # Enter key press user_input.submit( fn=submit, inputs=[user_input, chatbot, model_dropdown, max_tokens, temperature, top_p], outputs=[chatbot, user_input], ) if __name__ == "__main__": demo.queue(default_concurrency_limit=10, max_size=10).launch(ssr_mode=False, max_threads=10)