LeCarnet-Demo / app.py
MaxLSB's picture
Update app.py
644b0a5 verified
raw
history blame
5.11 kB
import os
import threading
from collections import defaultdict
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
# Define model paths
model_name_to_path = {
"LeCarnet-3M": "MaxLSB/LeCarnet-3M",
"LeCarnet-8M": "MaxLSB/LeCarnet-8M",
"LeCarnet-21M": "MaxLSB/LeCarnet-21M",
}
# Load Hugging Face token
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
# Preload models and tokenizers
loaded_models = defaultdict(dict)
for name, path in model_name_to_path.items():
loaded_models[name]["tokenizer"] = AutoTokenizer.from_pretrained(path, token=hf_token)
loaded_models[name]["model"] = AutoModelForCausalLM.from_pretrained(path, token=hf_token)
loaded_models[name]["model"].eval()
def respond(message, history, model_name, max_tokens, temperature, top_p):
"""
Generate a response from the selected model, streaming the output and updating chat history.
Args:
message (str): User's input message.
history (list): Current chat history as list of (user_msg, bot_msg) tuples.
model_name (str): Selected model name.
max_tokens (int): Maximum number of tokens to generate.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling parameter.
Yields:
list: Updated chat history with the user's message and streaming bot response.
"""
# Append user's message to history with an empty bot response
history = history + [(message, "")]
yield history # Display user's message immediately
# Select tokenizer and model
tokenizer = loaded_models[model_name]["tokenizer"]
model = loaded_models[model_name]["model"]
# Tokenize input
inputs = tokenizer(message, return_tensors="pt")
# Set up streaming
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=False,
skip_special_tokens=True,
)
# Configure generation parameters
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
eos_token_id=tokenizer.eos_token_id,
)
# Start generation in a background thread
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
# Stream the response with model name prefix
accumulated = f"**{model_name}:** "
for new_text in streamer:
accumulated += new_text
history[-1] = (message, accumulated)
yield history
def submit(message, history, model_name, max_tokens, temperature, top_p):
"""
Handle form submission by calling respond and clearing the input box.
Args:
message (str): User's input message.
history (list): Current chat history.
model_name (str): Selected model name.
max_tokens (int): Max tokens parameter.
temperature (float): Temperature parameter.
top_p (float): Top-p parameter.
Yields:
tuple: (updated chat history, cleared user input)
"""
for updated_history in respond(message, history, model_name, max_tokens, temperature, top_p):
yield updated_history, ""
# Create the Gradio interface with Blocks
with gr.Blocks() as demo:
# Title and description
gr.Markdown("# LeCarnet")
gr.Markdown("Select a model on the right and type a message to chat.")
# Two-column layout
with gr.Row():
# Left column: Chat interface
with gr.Column():
chatbot = gr.Chatbot(
avatar_images=(None, "media/le-carnet.png"), # User avatar: None, Bot avatar: Logo
label="Chat"
)
user_input = gr.Textbox(placeholder="Type your message here...", label="Message")
submit_btn = gr.Button("Send")
# Right column: Model selection and parameters
with gr.Column():
model_dropdown = gr.Dropdown(
choices=["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"],
value="LeCarnet-8M",
label="Model"
)
max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens")
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
# Example prompts
examples = gr.Examples(
examples=[
["Il était une fois un petit garçon qui vivait dans un village paisible."],
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
["Il était une fois un petit lapin perdu"],
],
inputs=user_input,
)
# Event handling for submit button
submit_btn.click(
fn=submit,
inputs=[user_input, chatbot, model_dropdown, max_tokens, temperature, top_p],
outputs=[chatbot, user_input],
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=10, max_size=10).launch(ssr_mode=False, max_threads=10)