Spaces:
Running
Running
import os | |
import threading | |
from collections import defaultdict | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
# Define model paths | |
model_name_to_path = { | |
"LeCarnet-3M": "MaxLSB/LeCarnet-3M", | |
"LeCarnet-8M": "MaxLSB/LeCarnet-8M", | |
"LeCarnet-21M": "MaxLSB/LeCarnet-21M", | |
} | |
# Load Hugging Face token | |
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
# Preload models and tokenizers | |
loaded_models = defaultdict(dict) | |
for name, path in model_name_to_path.items(): | |
loaded_models[name]["tokenizer"] = AutoTokenizer.from_pretrained(path, token=hf_token) | |
loaded_models[name]["model"] = AutoModelForCausalLM.from_pretrained(path, token=hf_token) | |
loaded_models[name]["model"].eval() | |
def respond( | |
prompt: str, | |
chat_history, | |
model_name: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
# Select the appropriate model and tokenizer | |
tokenizer = loaded_models[model_name]["tokenizer"] | |
model = loaded_models[model_name]["model"] | |
# Tokenize input | |
inputs = tokenizer(prompt, return_tensors="pt") | |
# Set up streaming | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=False, | |
skip_special_tokens=True, | |
) | |
# Configure generation parameters | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
# Run generation in a background thread | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
# Stream results | |
accumulated = "" | |
for new_text in streamer: | |
accumulated += new_text | |
yield accumulated | |
# Create Gradio Chat Interface | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Dropdown( | |
choices=["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"], | |
value="LeCarnet-8M", | |
label="Model", | |
), | |
gr.Slider(1, 512, value=512, step=1, label="Max New Tokens"), | |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"), | |
], | |
title="LeCarnet", | |
description="Select a model and enter text to get started.", | |
examples=[ | |
["Il était une fois un petit garçon qui vivait dans un village paisible."], | |
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], | |
["Il était une fois un petit lapin perdu"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=10, max_size=10).launch(ssr_mode=False, max_threads=10) |