File size: 4,772 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#version 450

#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#extension GL_EXT_control_flow_attributes : enable

layout (push_constant) uniform parameter
{
    uint KX;
    uint KY;
    float scale;
    float max_bias;
    float m0;
    float m1;
    uint n_head_log2;
    uint nrows_x;
} p;

#include "types.comp"

layout(constant_id = 0) const uint BLOCK_SIZE = 32;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) buffer D {D_TYPE data_d[];};

shared FLOAT_TYPE vals[BLOCK_SIZE];

// num_iters is the number of BLOCK_SIZE loop iterations we need to iterate
// over all the columns. The main function tries to pass a constant here,
// as if it were a template function, to allow unrolling.
void soft_max(uint num_iters) {
    const uint tid = gl_LocalInvocationID.x;
    const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
    const uint rowy = rowx % p.KY;

    if (rowx >= p.nrows_x) {
        return;
    }

    float slope = 1.0f;

    // ALiBi
    if (p.max_bias > 0.0f) {
        const uint h = rowx/p.KY; // head index

        const float base = h < p.n_head_log2 ? p.m0 : p.m1;
        const uint   exp  = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;

        slope = pow(base, exp);
    }

    // Find max
    FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);

    // Cache values while we compute the max, so we don't need to read them
    // again when we're ready to compute exp(x-max).
    const uint DATA_CACHE_SIZE = 16;
    FLOAT_TYPE data_cache[DATA_CACHE_SIZE];

    [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
        const uint col = col0 + tid;

        FLOAT_TYPE a = FLOAT_TYPE(0);
        if (col < p.KX) {
            a = data_a[rowx * p.KX + col];
        }

        FLOAT_TYPE b = FLOAT_TYPE(0);
        if (p.KY > 0 && col < p.KX) {
            b = data_b[rowy * p.KX + col];
        }

        FLOAT_TYPE v = a * p.scale + slope * b;

        if (col < p.KX) {
            max_val = max(max_val, v);
        }

        if (idx < DATA_CACHE_SIZE) {
            data_cache[idx] = v;
        }
    }

    // reduce across the workgroup
    vals[tid] = max_val;
    barrier();
    [[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
        if (tid < s) {
            vals[tid] = max(vals[tid], vals[tid + s]);
        }
        barrier();
    }

    max_val = vals[0];
    barrier();

    FLOAT_TYPE sum = FLOAT_TYPE(0.0f);

    // Compute sum{exp(x - max)}
    [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
        const uint col = col0 + tid;

        if (col >= p.KX) {
            break;
        }

        // compute exp(a*scale+b*slope), add it to sum, and cache the new value
        // in data_cache if possible.
        const uint i = rowx * p.KX + col;
        FLOAT_TYPE val;
        if (idx < DATA_CACHE_SIZE) {
            val = exp(data_cache[idx] - max_val);
        } else {
            val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
        }
        sum += val;
        if (idx < DATA_CACHE_SIZE) {
            data_cache[idx] = val;
        } else {
            data_d[i] = D_TYPE(val);
        }
    }

    // reduce across the workgroup
    vals[tid] = sum;
    barrier();
    [[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
        if (tid < s) {
            vals[tid] += vals[tid + s];
        }
        barrier();
    }
    sum = vals[0];

    FLOAT_TYPE rcpdivisor = 1.0/sum;

    [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
        const uint col = col0 + tid;

        if (col >= p.KX) {
            continue;
        }

        if (idx < DATA_CACHE_SIZE) {
            data_d[rowx*p.KX + col] = D_TYPE(data_cache[idx] * rcpdivisor);
        } else {
            data_d[rowx*p.KX + col] *= D_TYPE(rcpdivisor);
        }
    }
}

void main() {
    // instantiate the soft_max function for several different
    // dimensions, to allow loop unrolling
    uint num_blocks = (p.KX + BLOCK_SIZE - 1) / BLOCK_SIZE;
    if (num_blocks > 32) {
        soft_max(num_blocks);
    } else if (num_blocks > 16) {
        soft_max(32);
    } else if (num_blocks > 8) {
        soft_max(16);
    } else if (num_blocks > 4) {
        soft_max(8);
    } else if (num_blocks == 4) {
        soft_max(4);
    } else if (num_blocks == 3) {
        soft_max(3);
    } else if (num_blocks == 2) {
        soft_max(2);
    } else if (num_blocks == 1) {
        soft_max(1);
    }
}