Spaces:
Runtime error
Runtime error
Update train.py
Browse files
train.py
CHANGED
@@ -1,69 +1,51 @@
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Load processor and model
|
8 |
-
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
-
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
-
|
11 |
-
# Preprocess function
|
12 |
-
def preprocess(ex):
|
13 |
-
img = ex["image"].convert("RGB")
|
14 |
-
inputs = processor(images=img, return_tensors="pt")
|
15 |
-
|
16 |
-
# Convert label index to actual LaTeX string
|
17 |
-
label_str = ds.features["label"].int2str(ex["label"])
|
18 |
-
labels = processor.tokenizer(
|
19 |
-
label_str,
|
20 |
-
truncation=True,
|
21 |
-
padding="max_length",
|
22 |
-
max_length=128
|
23 |
-
).input_ids
|
24 |
-
|
25 |
-
ex["pixel_values"] = inputs.pixel_values[0]
|
26 |
-
ex["labels"] = labels
|
27 |
-
return ex
|
28 |
-
|
29 |
-
# Apply preprocessing
|
30 |
-
ds = ds.map(
|
31 |
-
preprocess,
|
32 |
-
remove_columns=["image", "label"],
|
33 |
-
num_proc=1,
|
34 |
-
load_from_cache_file=False
|
35 |
-
)
|
36 |
-
|
37 |
-
|
38 |
-
# Model config
|
39 |
-
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
40 |
-
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
41 |
-
|
42 |
-
# Training arguments
|
43 |
-
training_args = Seq2SeqTrainingArguments(
|
44 |
-
output_dir="trained_model",
|
45 |
-
per_device_train_batch_size=2,
|
46 |
-
num_train_epochs=1,
|
47 |
-
learning_rate=5e-5,
|
48 |
-
logging_steps=10,
|
49 |
-
save_steps=500,
|
50 |
-
fp16=False,
|
51 |
-
push_to_hub=False,
|
52 |
-
)
|
53 |
-
|
54 |
-
# Trainer
|
55 |
-
trainer = Seq2SeqTrainer(
|
56 |
-
model=model,
|
57 |
-
args=training_args,
|
58 |
-
train_dataset=ds,
|
59 |
-
tokenizer=processor.tokenizer,
|
60 |
-
data_collator=default_data_collator,
|
61 |
-
)
|
62 |
-
|
63 |
-
# Train and save
|
64 |
-
if __name__ == "__main__":
|
65 |
-
print("π Training started")
|
66 |
trainer.train()
|
67 |
print("β
Training completed")
|
|
|
68 |
model.save_pretrained("trained_model")
|
69 |
processor.save_pretrained("trained_model")
|
|
|
|
1 |
+
import os
|
2 |
from datasets import load_dataset
|
3 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator
|
4 |
|
5 |
+
if os.path.exists("trained_model"):
|
6 |
+
print("β
Model already exists. Skipping training.")
|
7 |
+
else:
|
8 |
+
print("π Starting training...")
|
9 |
+
|
10 |
+
ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:100]")
|
11 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
12 |
+
|
13 |
+
def preprocess(ex):
|
14 |
+
img = ex["image"].convert("RGB")
|
15 |
+
inputs = processor(images=img, return_tensors="pt")
|
16 |
+
labels = processor.tokenizer(ex["label"], truncation=True, padding="max_length", max_length=128).input_ids
|
17 |
+
ex["pixel_values"] = inputs.pixel_values[0]
|
18 |
+
ex["labels"] = labels
|
19 |
+
return ex
|
20 |
+
|
21 |
+
ds = ds.map(preprocess, remove_columns=["image", "label"])
|
22 |
+
|
23 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
24 |
+
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
25 |
+
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
26 |
+
|
27 |
+
training_args = Seq2SeqTrainingArguments(
|
28 |
+
output_dir="trained_model",
|
29 |
+
per_device_train_batch_size=2,
|
30 |
+
num_train_epochs=1,
|
31 |
+
learning_rate=5e-5,
|
32 |
+
logging_steps=10,
|
33 |
+
save_steps=500,
|
34 |
+
fp16=False,
|
35 |
+
push_to_hub=False,
|
36 |
+
)
|
37 |
+
|
38 |
+
trainer = Seq2SeqTrainer(
|
39 |
+
model=model,
|
40 |
+
args=training_args,
|
41 |
+
train_dataset=ds,
|
42 |
+
tokenizer=processor.tokenizer,
|
43 |
+
data_collator=default_data_collator,
|
44 |
+
)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
trainer.train()
|
47 |
print("β
Training completed")
|
48 |
+
|
49 |
model.save_pretrained("trained_model")
|
50 |
processor.save_pretrained("trained_model")
|
51 |
+
print("β
Model saved to trained_model/")
|