File size: 1,478 Bytes
e5bfb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb0ee57
 
e5bfb7c
 
 
 
 
 
 
eb0ee57
e5bfb7c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from datasets import load_dataset
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator

# Load the handwritten math dataset
ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:1000]")

processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")

def preprocess(ex):
    img = ex["image"].convert("RGB")
    inputs = processor(images=img, return_tensors="pt")
    labels = processor.tokenizer(ex["text"], truncation=True, padding="max_length", max_length=128).input_ids
    ex["pixel_values"] = inputs.pixel_values[0]
    ex["labels"] = labels
    return ex

ds = ds.map(preprocess, remove_columns=["image", "text"])

model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id

training_args = Seq2SeqTrainingArguments(
    output_dir="trained_model",
    per_device_train_batch_size=2,
    num_train_epochs=1,
    learning_rate=5e-5,
    logging_steps=10,
    save_steps=500,
    fp16=False,
    push_to_hub=False,
)

trainer = Seq2SeqTrainer(
    model=model,
    args=training_args,
    train_dataset=ds,
    tokenizer=processor.tokenizer,
    data_collator=default_data_collator,
)

trainer.train()
model.save_pretrained("trained_model")
processor.save_pretrained("trained_model")