import gradio as gr from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load from huggingface_hub import ModelCard import requests import re import pandas as pd import os # -------------------- # Helper functions # -------------------- def pass_emoji(passed): return "✅" if passed else "❌" api = HfApi() USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on" HF_TOKEN = os.environ.get("HF_TOKEN") def get_user_models(hf_username, task): """ List the user's models for a given task """ try: models = api.list_models(author=hf_username, filter=[task]) except Exception: return [] user_model_ids = [x.modelId for x in models] # map task to dataset if task == "audio-classification": dataset = 'marsyas/gtzan' elif task == "automatic-speech-recognition": dataset = 'PolyAI/minds14' elif task == "text-to-speech": dataset = "" else: print(f"Unsupported task: {task}") return [] dataset_specific_models = [] for model in user_model_ids: try: meta = get_metadata(model) if meta is None: continue if dataset == "" or meta.get("datasets") == [dataset]: dataset_specific_models.append(model) except Exception: continue return dataset_specific_models def get_metadata(model_id): """Load model metadata safely""" try: readme_path = hf_hub_download(model_id, filename="README.md", token=HF_TOKEN) return metadata_load(readme_path) except requests.exceptions.HTTPError: return None except Exception: return None def extract_metric(model_card_content, task): """Extract metric from model card content""" accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)" wer_pattern = r"Wer: (\d+\.\d+)" pattern = accuracy_pattern if task == "audio-classification" else wer_pattern match = re.search(pattern, model_card_content) return float(match.group(1)) if match else None def parse_metrics(model, task): try: card = ModelCard.load(model) return extract_metric(card.content, task) except Exception: return None def calculate_best_result(user_models, task): """Calculate best result for a task""" best_model = "" best_result = -100 if task == "audio-classification" else 100 larger_is_better = task == "audio-classification" for model in user_models: metric = parse_metrics(model, task) if metric is None: continue if (larger_is_better and metric > best_result) or (not larger_is_better and metric < best_result): best_result = metric meta = get_metadata(model) if meta: best_model = meta.get('model-index', [{}])[0].get("name", model) return best_result, best_model # -------------------- # Certification logic # -------------------- def certification(hf_username): results_certification = [ {"unit": "Unit 4: Audio Classification", "task": "audio-classification", "baseline_metric": 0.87, "best_result": 0, "best_model_id": "", "passed_": False}, {"unit": "Unit 5: Automatic Speech Recognition", "task": "automatic-speech-recognition", "baseline_metric": 0.37, "best_result": 0, "best_model_id": "", "passed_": False}, {"unit": "Unit 6: Text-to-Speech", "task": "text-to-speech", "baseline_metric": 0, "best_result": 0, "best_model_id": "", "passed_": False}, {"unit": "Unit 7: Audio applications", "task": "demo", "baseline_metric": 0, "best_result": 0, "best_model_id": "", "passed_": False}, ] for unit in results_certification: task = unit["task"] if task == "audio-classification": try: models = get_user_models(hf_username, task) best_result, best_model_id = calculate_best_result(models, task) unit["best_result"] = best_result unit["best_model_id"] = best_model_id unit["passed_"] = best_result >= unit["baseline_metric"] except Exception: pass elif task == "automatic-speech-recognition": try: models = get_user_models(hf_username, task) best_result, best_model_id = calculate_best_result(models, task) unit["best_result"] = best_result unit["best_model_id"] = best_model_id unit["passed_"] = best_result <= unit["baseline_metric"] except Exception: pass elif task == "text-to-speech": try: models = get_user_models(hf_username, task) if models: unit["best_result"] = 0 unit["best_model_id"] = models[0] unit["passed_"] = True except Exception: pass elif task == "demo": try: u7_file = hf_hub_download(USERNAMES_DATASET_ID, repo_type="dataset", filename="usernames.csv", token=HF_TOKEN) u7_users = pd.read_csv(u7_file) if hf_username in u7_users['username'].tolist(): unit["best_result"] = 0 unit["best_model_id"] = "Demo check passed" unit["passed_"] = True except Exception: pass unit["passed"] = pass_emoji(unit["passed_"]) df = pd.DataFrame(results_certification) df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']] return df # -------------------- # Gradio UI # -------------------- with gr.Blocks() as demo: gr.Markdown(""" # 🏆 Check your progress in the Audio Course 🏆 - Pass 3 out of 4 assignments for a certificate. - Pass 4 out of 4 assignments for honors. - For Unit 7, first check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment). - Make sure your models are uploaded to Hub and public. """) hf_username_input = gr.Textbox(label="Your Hugging Face Username", placeholder="MariaK") check_button = gr.Button("Check my progress") output_table = gr.Dataframe() check_button.click(fn=certification, inputs=hf_username_input, outputs=output_table) demo.launch()