#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from dataclasses import dataclass from typing import Any, Dict, Optional from .local_python_executor import ( BASE_BUILTIN_MODULES, BASE_PYTHON_TOOLS, evaluate_python_code, ) from .tools import PipelineTool, Tool @dataclass class PreTool: name: str inputs: Dict[str, str] output_type: type task: str description: str repo_id: str class PythonInterpreterTool(Tool): name = "python_interpreter" description = "This is a tool that evaluates python code. It can be used to perform calculations." inputs = { "code": { "type": "string", "description": "The python code to run in interpreter", } } output_type = "string" def __init__(self, *args, authorized_imports=None, **kwargs): if authorized_imports is None: self.authorized_imports = list(set(BASE_BUILTIN_MODULES)) else: self.authorized_imports = list(set(BASE_BUILTIN_MODULES) | set(authorized_imports)) self.inputs = { "code": { "type": "string", "description": ( "The code snippet to evaluate. All variables used in this snippet must be defined in this same snippet, " f"else you will get an error. This code can only import the following python libraries: {authorized_imports}." ), } } self.base_python_tools = BASE_PYTHON_TOOLS self.python_evaluator = evaluate_python_code super().__init__(*args, **kwargs) def forward(self, code: str) -> str: state = {} output = str( self.python_evaluator( code, state=state, static_tools=self.base_python_tools, authorized_imports=self.authorized_imports, )[0] # The second element is boolean is_final_answer ) return f"Stdout:\n{str(state['_print_outputs'])}\nOutput: {output}" class FinalAnswerTool(Tool): name = "final_answer" description = "Provides a final answer to the given problem." inputs = {"answer": {"type": "any", "description": "The final answer to the problem"}} output_type = "any" def forward(self, answer: Any) -> Any: return answer class UserInputTool(Tool): name = "user_input" description = "Asks for user's input on a specific question" inputs = {"question": {"type": "string", "description": "The question to ask the user"}} output_type = "string" def forward(self, question): user_input = input(f"{question} => Type your answer here:") return user_input class DuckDuckGoSearchTool(Tool): name = "web_search" description = """Performs a duckduckgo web search based on your query (think a Google search) then returns the top search results.""" inputs = {"query": {"type": "string", "description": "The search query to perform."}} output_type = "string" def __init__(self, max_results=10, **kwargs): super().__init__() self.max_results = max_results try: from duckduckgo_search import DDGS except ImportError as e: raise ImportError( "You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`." ) from e self.ddgs = DDGS(**kwargs) def forward(self, query: str) -> str: results = self.ddgs.text(query, max_results=self.max_results) if len(results) == 0: raise Exception("No results found! Try a less restrictive/shorter query.") postprocessed_results = [f"[{result['title']}]({result['href']})\n{result['body']}" for result in results] return "## Search Results\n\n" + "\n\n".join(postprocessed_results) class GoogleSearchTool(Tool): name = "web_search" description = """Performs a google web search for your query then returns a string of the top search results.""" inputs = { "query": {"type": "string", "description": "The search query to perform."}, "filter_year": { "type": "integer", "description": "Optionally restrict results to a certain year", "nullable": True, }, } output_type = "string" def __init__(self, provider: str = "serpapi"): super().__init__() import os self.provider = provider if provider == "serpapi": self.organic_key = "organic_results" api_key_env_name = "SERPAPI_API_KEY" else: self.organic_key = "organic" api_key_env_name = "SERPER_API_KEY" self.api_key = os.getenv(api_key_env_name) if self.api_key is None: raise ValueError(f"Missing API key. Make sure you have '{api_key_env_name}' in your env variables.") def forward(self, query: str, filter_year: Optional[int] = None) -> str: import requests if self.provider == "serpapi": params = { "q": query, "api_key": self.api_key, "engine": "google", "google_domain": "google.com", } base_url = "https://serpapi.com/search.json" else: params = { "q": query, "api_key": self.api_key, } base_url = "https://google.serper.dev/search" if filter_year is not None: params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}" response = requests.get(base_url, params=params) if response.status_code == 200: results = response.json() else: raise ValueError(response.json()) if self.organic_key not in results.keys(): if filter_year is not None: raise Exception( f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year." ) else: raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.") if len(results[self.organic_key]) == 0: year_filter_message = f" with filter year={filter_year}" if filter_year is not None else "" return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter." web_snippets = [] if self.organic_key in results: for idx, page in enumerate(results[self.organic_key]): date_published = "" if "date" in page: date_published = "\nDate published: " + page["date"] source = "" if "source" in page: source = "\nSource: " + page["source"] snippet = "" if "snippet" in page: snippet = "\n" + page["snippet"] redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}" web_snippets.append(redacted_version) return "## Search Results\n" + "\n\n".join(web_snippets) class VisitWebpageTool(Tool): name = "visit_webpage" description = ( "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages." ) inputs = { "url": { "type": "string", "description": "The url of the webpage to visit.", } } output_type = "string" def forward(self, url: str) -> str: try: import requests from markdownify import markdownify from requests.exceptions import RequestException from smolagents.utils import truncate_content except ImportError as e: raise ImportError( "You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`." ) from e try: # Send a GET request to the URL with a 20-second timeout response = requests.get(url, timeout=20) response.raise_for_status() # Raise an exception for bad status codes # Convert the HTML content to Markdown markdown_content = markdownify(response.text).strip() # Remove multiple line breaks markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content) return truncate_content(markdown_content, 10000) except requests.exceptions.Timeout: return "The request timed out. Please try again later or check the URL." except RequestException as e: return f"Error fetching the webpage: {str(e)}" except Exception as e: return f"An unexpected error occurred: {str(e)}" class SpeechToTextTool(PipelineTool): default_checkpoint = "openai/whisper-large-v3-turbo" description = "This is a tool that transcribes an audio into text. It returns the transcribed text." name = "transcriber" inputs = { "audio": { "type": "audio", "description": "The audio to transcribe. Can be a local path, an url, or a tensor.", } } output_type = "string" def __new__(cls, *args, **kwargs): from transformers.models.whisper import ( WhisperForConditionalGeneration, WhisperProcessor, ) cls.pre_processor_class = WhisperProcessor cls.model_class = WhisperForConditionalGeneration return super().__new__(cls, *args, **kwargs) def encode(self, audio): from .agent_types import AgentAudio audio = AgentAudio(audio).to_raw() return self.pre_processor(audio, return_tensors="pt") def forward(self, inputs): return self.model.generate(inputs["input_features"]) def decode(self, outputs): return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0] TOOL_MAPPING = { tool_class.name: tool_class for tool_class in [ PythonInterpreterTool, DuckDuckGoSearchTool, VisitWebpageTool, ] } __all__ = [ "PythonInterpreterTool", "FinalAnswerTool", "UserInputTool", "DuckDuckGoSearchTool", "GoogleSearchTool", "VisitWebpageTool", "SpeechToTextTool", ]