Moonshot_DeepResearch / examples /rag_using_chromadb.py
MaoShen's picture
Upload folder using huggingface_hub
2eb41d7 verified
import os
import datasets
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_chroma import Chroma
# from langchain_community.document_loaders import PyPDFLoader
from langchain_huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
from transformers import AutoTokenizer
# from langchain_openai import OpenAIEmbeddings
from smolagents import LiteLLMModel, Tool
from smolagents.agents import CodeAgent
# from smolagents.agents import ToolCallingAgent
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
source_docs = [
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
]
## For your own PDFs, you can use the following code to load them into source_docs
# pdf_directory = "pdfs"
# pdf_files = [
# os.path.join(pdf_directory, f)
# for f in os.listdir(pdf_directory)
# if f.endswith(".pdf")
# ]
# source_docs = []
# for file_path in pdf_files:
# loader = PyPDFLoader(file_path)
# docs.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
AutoTokenizer.from_pretrained("thenlper/gte-small"),
chunk_size=200,
chunk_overlap=20,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
# Split docs and keep only unique ones
print("Splitting documents...")
docs_processed = []
unique_texts = {}
for doc in tqdm(source_docs):
new_docs = text_splitter.split_documents([doc])
for new_doc in new_docs:
if new_doc.page_content not in unique_texts:
unique_texts[new_doc.page_content] = True
docs_processed.append(new_doc)
print("Embedding documents... This should take a few minutes (5 minutes on MacBook with M1 Pro)")
# Initialize embeddings and ChromaDB vector store
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = Chroma.from_documents(docs_processed, embeddings, persist_directory="./chroma_db")
class RetrieverTool(Tool):
name = "retriever"
description = (
"Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
)
inputs = {
"query": {
"type": "string",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
}
}
output_type = "string"
def __init__(self, vector_store, **kwargs):
super().__init__(**kwargs)
self.vector_store = vector_store
def forward(self, query: str) -> str:
assert isinstance(query, str), "Your search query must be a string"
docs = self.vector_store.similarity_search(query, k=3)
return "\nRetrieved documents:\n" + "".join(
[f"\n\n===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)]
)
retriever_tool = RetrieverTool(vector_store)
# Choose which LLM engine to use!
# from smolagents import HfApiModel
# model = HfApiModel(model_id="meta-llama/Llama-3.3-70B-Instruct")
# from smolagents import TransformersModel
# model = TransformersModel(model_id="meta-llama/Llama-3.2-2B-Instruct")
# For anthropic: change model_id below to 'anthropic/claude-3-5-sonnet-20240620' and also change 'os.environ.get("ANTHROPIC_API_KEY")'
model = LiteLLMModel(
model_id="groq/llama-3.3-70b-versatile",
api_key=os.environ.get("GROQ_API_KEY"),
)
# # You can also use the ToolCallingAgent class
# agent = ToolCallingAgent(
# tools=[retriever_tool],
# model=model,
# verbose=True,
# )
agent = CodeAgent(
tools=[retriever_tool],
model=model,
max_steps=4,
verbosity_level=2,
)
agent_output = agent.run("How can I push a model to the Hub?")
print("Final output:")
print(agent_output)