MaoShen's picture
Upload folder using huggingface_hub
2eb41d7 verified
# from huggingface_hub import login
# login()
import datasets
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
knowledge_base = knowledge_base.filter(lambda row: row["source"].startswith("huggingface/transformers"))
source_docs = [
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
]
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = text_splitter.split_documents(source_docs)
from smolagents import Tool
class RetrieverTool(Tool):
name = "retriever"
description = "Uses semantic search to retrieve the parts of transformers documentation that could be most relevant to answer your query."
inputs = {
"query": {
"type": "string",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
}
}
output_type = "string"
def __init__(self, docs, **kwargs):
super().__init__(**kwargs)
self.retriever = BM25Retriever.from_documents(docs, k=10)
def forward(self, query: str) -> str:
assert isinstance(query, str), "Your search query must be a string"
docs = self.retriever.invoke(
query,
)
return "\nRetrieved documents:\n" + "".join(
[f"\n\n===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)]
)
from smolagents import CodeAgent, HfApiModel
retriever_tool = RetrieverTool(docs_processed)
agent = CodeAgent(
tools=[retriever_tool],
model=HfApiModel("meta-llama/Llama-3.3-70B-Instruct"),
max_steps=4,
verbosity_level=2,
)
agent_output = agent.run("For a transformers model training, which is slower, the forward or the backward pass?")
print("Final output:")
print(agent_output)