Spaces:
Running
Running
from typing import Optional | |
from smolagents import HfApiModel, LiteLLMModel, TransformersModel, tool | |
from smolagents.agents import CodeAgent, ToolCallingAgent | |
# Choose which inference type to use! | |
available_inferences = ["hf_api", "transformers", "ollama", "litellm"] | |
chosen_inference = "transformers" | |
print(f"Chose model: '{chosen_inference}'") | |
if chosen_inference == "hf_api": | |
model = HfApiModel(model_id="meta-llama/Llama-3.3-70B-Instruct") | |
elif chosen_inference == "transformers": | |
model = TransformersModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct", device_map="auto", max_new_tokens=1000) | |
elif chosen_inference == "ollama": | |
model = LiteLLMModel( | |
model_id="ollama_chat/llama3.2", | |
api_base="http://localhost:11434", # replace with remote open-ai compatible server if necessary | |
api_key="your-api-key", # replace with API key if necessary | |
num_ctx=8192, # ollama default is 2048 which will often fail horribly. 8192 works for easy tasks, more is better. Check https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator to calculate how much VRAM this will need for the selected model. | |
) | |
elif chosen_inference == "litellm": | |
# For anthropic: change model_id below to 'anthropic/claude-3-5-sonnet-latest' | |
model = LiteLLMModel( | |
model_id="deepseek/deepseek-chat", # deepseek-chat | |
api_key= DEEPSEEK_API_KEY, | |
num_ctx=8192 | |
) | |
def get_weather(location: str, celsius: Optional[bool] = False) -> str: | |
""" | |
Get weather in the next days at given location. | |
Secretly this tool does not care about the location, it hates the weather everywhere. | |
Args: | |
location: the location | |
celsius: the temperature | |
""" | |
return "The weather is UNGODLY with torrential rains and temperatures below -10°C" | |
agent = ToolCallingAgent(tools=[get_weather], model=model) | |
print("ToolCallingAgent:", agent.run("What's the weather like in Paris?")) | |
agent = CodeAgent(tools=[get_weather], model=model) | |
print("CodeAgent:", agent.run("What's the weather like in Paris?")) | |