MaoShen's picture
Upload folder using huggingface_hub
2eb41d7 verified
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 模型
<Tip warning={true}>
Smolagents 是一个实验性 API,其可能会随时发生更改。由于 API 或底层模型可能会变化,智能体返回的结果可能会有所不同。
</Tip>
要了解有关智能体和工具的更多信息,请务必阅读[入门指南](../index)。此页面包含底层类的 API 文档。
## 模型
您可以自由创建和使用自己的模型为智能体提供支持。
您可以使用任何 `model` 可调用对象作为智能体的模型,只要满足以下条件:
1. 它遵循[消息格式](./chat_templating)(`List[Dict[str, str]]`),将其作为输入 `messages`,并返回一个 `str`。
2. 它在生成的序列到达 `stop_sequences` 参数中指定的内容之前停止生成输出。
要定义您的 LLM,可以创建一个 `custom_model` 方法,该方法接受一个 [messages](./chat_templating) 列表,并返回一个包含 `.content` 属性的对象,其中包含生成的文本。此可调用对象还需要接受一个 `stop_sequences` 参数,用于指示何时停止生成。
```python
from huggingface_hub import login, InferenceClient
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")
model_id = "meta-llama/Llama-3.3-70B-Instruct"
client = InferenceClient(model=model_id)
def custom_model(messages, stop_sequences=["Task"]):
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000)
answer = response.choices[0].message
return answer
```
此外,`custom_model` 还可以接受一个 `grammar` 参数。如果在智能体初始化时指定了 `grammar`,则此参数将在调用模型时传递,以便进行[约束生成](https://huggingface.co/docs/text-generation-inference/conceptual/guidance),从而强制生成格式正确的智能体输出。
### TransformersModel
为了方便起见,我们添加了一个 `TransformersModel`,该模型通过为初始化时指定的 `model_id` 构建一个本地 `transformers` pipeline 来实现上述功能。
```python
from smolagents import TransformersModel
model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
print(model([{"role": "user", "content": [{"type": "text", "text": "Ok!"}]}], stop_sequences=["great"]))
```
```text
>>> What a
```
> [!TIP]
> 您必须在机器上安装 `transformers` 和 `torch`。如果尚未安装,请运行 `pip install smolagents[transformers]`。
[[autodoc]] TransformersModel
### HfApiModel
`HfApiModel` 封装了 huggingface_hub 的 [InferenceClient](https://huggingface.co/docs/huggingface_hub/main/en/guides/inference),用于执行 LLM。它支持 HF 的 [Inference API](https://huggingface.co/docs/api-inference/index) 以及 Hub 上所有可用的[Inference Providers](https://huggingface.co/blog/inference-providers)。
```python
from smolagents import HfApiModel
messages = [
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
]
model = HfApiModel()
print(model(messages))
```
```text
>>> Of course! If you change your mind, feel free to reach out. Take care!
```
[[autodoc]] HfApiModel
### LiteLLMModel
`LiteLLMModel` 利用 [LiteLLM](https://www.litellm.ai/) 支持来自不同提供商的 100+ 个 LLM。您可以在模型初始化时传递 `kwargs`,这些参数将在每次使用模型时被使用,例如下面的示例中传递了 `temperature`。
```python
from smolagents import LiteLLMModel
messages = [
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
]
model = LiteLLMModel("anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=10)
print(model(messages))
```
[[autodoc]] LiteLLMModel
### OpenAIServerModel
此类允许您调用任何 OpenAIServer 兼容模型。
以下是设置方法(您可以自定义 `api_base` URL 指向其他服务器):
```py
import os
from smolagents import OpenAIServerModel
model = OpenAIServerModel(
model_id="gpt-4o",
api_base="https://api.openai.com/v1",
api_key=os.environ["OPENAI_API_KEY"],
)
```
[[autodoc]] OpenAIServerModel
### AzureOpenAIServerModel
`AzureOpenAIServerModel` 允许您连接到任何 Azure OpenAI 部署。
下面是设置示例,请注意,如果已经设置了相应的环境变量,您可以省略 `azure_endpoint`、`api_key` 和 `api_version` 参数——环境变量包括 `AZURE_OPENAI_ENDPOINT`、`AZURE_OPENAI_API_KEY` 和 `OPENAI_API_VERSION`。
请注意,`OPENAI_API_VERSION` 没有 `AZURE_` 前缀,这是由于底层 [openai](https://github.com/openai/openai-python) 包的设计所致。
```py
import os
from smolagents import AzureOpenAIServerModel
model = AzureOpenAIServerModel(
model_id = os.environ.get("AZURE_OPENAI_MODEL"),
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
api_key=os.environ.get("AZURE_OPENAI_API_KEY"),
api_version=os.environ.get("OPENAI_API_VERSION")
)
```
[[autodoc]] AzureOpenAIServerModel
### MLXModel
```python
from smolagents import MLXModel
model = MLXModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))
```
```text
>>> What a
```
> [!TIP]
> 您必须在机器上安装 `mlx-lm`。如果尚未安装,请运行 `pip install smolagents[mlx-lm]`。
[[autodoc]] MLXModel