Spaces:
Running
Running
<!--Copyright 2024 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be | |
rendered properly in your Markdown viewer. | |
--> | |
# Text-to-SQL | |
[[open-in-colab]] | |
在此教程中,我们将看到如何使用 `smolagents` 实现一个利用 SQL 的 agent。 | |
> 让我们从经典问题开始:为什么不简单地使用标准的 text-to-SQL pipeline 呢? | |
标准的 text-to-SQL pipeline 很脆弱,因为生成的 SQL 查询可能会出错。更糟糕的是,查询可能出错却不引发错误警报,从而返回一些不正确或无用的结果。 | |
👉 相反,agent 系统则可以检视输出结果并决定查询是否需要被更改,因此带来巨大的性能提升。 | |
让我们来一起构建这个 agent! 💪 | |
首先,我们构建一个 SQL 的环境: | |
```py | |
from sqlalchemy import ( | |
create_engine, | |
MetaData, | |
Table, | |
Column, | |
String, | |
Integer, | |
Float, | |
insert, | |
inspect, | |
text, | |
) | |
engine = create_engine("sqlite:///:memory:") | |
metadata_obj = MetaData() | |
# create city SQL table | |
table_name = "receipts" | |
receipts = Table( | |
table_name, | |
metadata_obj, | |
Column("receipt_id", Integer, primary_key=True), | |
Column("customer_name", String(16), primary_key=True), | |
Column("price", Float), | |
Column("tip", Float), | |
) | |
metadata_obj.create_all(engine) | |
rows = [ | |
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, | |
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, | |
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, | |
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, | |
] | |
for row in rows: | |
stmt = insert(receipts).values(**row) | |
with engine.begin() as connection: | |
cursor = connection.execute(stmt) | |
``` | |
### 构建 agent | |
现在,我们构建一个 agent,它将使用 SQL 查询来回答问题。工具的 description 属性将被 agent 系统嵌入到 LLM 的提示中:它为 LLM 提供有关如何使用该工具的信息。这正是我们描述 SQL 表的地方。 | |
```py | |
inspector = inspect(engine) | |
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] | |
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info]) | |
print(table_description) | |
``` | |
```text | |
Columns: | |
- receipt_id: INTEGER | |
- customer_name: VARCHAR(16) | |
- price: FLOAT | |
- tip: FLOAT | |
``` | |
现在让我们构建我们的工具。它需要以下内容:(更多细节请参阅[工具文档](../tutorials/tools)) | |
- 一个带有 `Args:` 部分列出参数的 docstring。 | |
- 输入和输出的type hints。 | |
```py | |
from smolagents import tool | |
@tool | |
def sql_engine(query: str) -> str: | |
""" | |
Allows you to perform SQL queries on the table. Returns a string representation of the result. | |
The table is named 'receipts'. Its description is as follows: | |
Columns: | |
- receipt_id: INTEGER | |
- customer_name: VARCHAR(16) | |
- price: FLOAT | |
- tip: FLOAT | |
Args: | |
query: The query to perform. This should be correct SQL. | |
""" | |
output = "" | |
with engine.connect() as con: | |
rows = con.execute(text(query)) | |
for row in rows: | |
output += "\n" + str(row) | |
return output | |
``` | |
我们现在使用这个工具来创建一个 agent。我们使用 `CodeAgent`,这是 smolagent 的主要 agent 类:一个在代码中编写操作并根据 ReAct 框架迭代先前输出的 agent。 | |
这个模型是驱动 agent 系统的 LLM。`HfApiModel` 允许你使用 HF Inference API 调用 LLM,无论是通过 Serverless 还是 Dedicated endpoint,但你也可以使用任何专有 API。 | |
```py | |
from smolagents import CodeAgent, HfApiModel | |
agent = CodeAgent( | |
tools=[sql_engine], | |
model=HfApiModel("meta-llama/Meta-Llama-3.1-8B-Instruct"), | |
) | |
agent.run("Can you give me the name of the client who got the most expensive receipt?") | |
``` | |
### Level 2: 表连接 | |
现在让我们增加一些挑战!我们希望我们的 agent 能够处理跨多个表的连接。因此,我们创建一个新表,记录每个 receipt_id 的服务员名字! | |
```py | |
table_name = "waiters" | |
receipts = Table( | |
table_name, | |
metadata_obj, | |
Column("receipt_id", Integer, primary_key=True), | |
Column("waiter_name", String(16), primary_key=True), | |
) | |
metadata_obj.create_all(engine) | |
rows = [ | |
{"receipt_id": 1, "waiter_name": "Corey Johnson"}, | |
{"receipt_id": 2, "waiter_name": "Michael Watts"}, | |
{"receipt_id": 3, "waiter_name": "Michael Watts"}, | |
{"receipt_id": 4, "waiter_name": "Margaret James"}, | |
] | |
for row in rows: | |
stmt = insert(receipts).values(**row) | |
with engine.begin() as connection: | |
cursor = connection.execute(stmt) | |
``` | |
因为我们改变了表,我们需要更新 `SQLExecutorTool`,让 LLM 能够正确利用这个表的信息。 | |
```py | |
updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output. | |
It can use the following tables:""" | |
inspector = inspect(engine) | |
for table in ["receipts", "waiters"]: | |
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)] | |
table_description = f"Table '{table}':\n" | |
table_description += "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info]) | |
updated_description += "\n\n" + table_description | |
print(updated_description) | |
``` | |
因为这个request 比之前的要难一些,我们将 LLM 引擎切换到更强大的 [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)! | |
```py | |
sql_engine.description = updated_description | |
agent = CodeAgent( | |
tools=[sql_engine], | |
model=HfApiModel("Qwen/Qwen2.5-Coder-32B-Instruct"), | |
) | |
agent.run("Which waiter got more total money from tips?") | |
``` | |
它直接就能工作!设置过程非常简单,难道不是吗? | |
这个例子到此结束!我们涵盖了这些概念: | |
- 构建新工具。 | |
- 更新工具的描述。 | |
- 切换到更强大的 LLM 有助于 agent 推理。 | |
✅ 现在你可以构建你一直梦寐以求的 text-to-SQL 系统了!✨ | |