Spaces:
Running
Running
<!--Copyright 2024 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be | |
rendered properly in your Markdown viewer. | |
--> | |
# 多步骤 agent 是如何工作的? | |
ReAct 框架([Yao et al., 2022](https://huggingface.co/papers/2210.03629))是目前构建 agent 的主要方法。 | |
该名称基于两个词的组合:"Reason" (推理)和 "Act" (行动)。实际上,遵循此架构的 agent 将根据需要尽可能多的步骤来解决其任务,每个步骤包括一个推理步骤,然后是一个行动步骤,在该步骤中,它制定工具调用,使其更接近解决手头的任务。 | |
ReAct 过程涉及保留过去步骤的记忆。 | |
> [!TIP] | |
> 阅读 [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) 博客文章以了解更多关于多步 agent 的信息。 | |
以下是其工作原理的视频概述: | |
<div class="flex justify-center"> | |
<img | |
class="block dark:hidden" | |
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Agent_ManimCE.gif" | |
/> | |
<img | |
class="hidden dark:block" | |
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Agent_ManimCE.gif" | |
/> | |
</div> | |
 | |
我们实现了两个版本的 ToolCallingAgent: | |
- [`ToolCallingAgent`] 在其输出中生成 JSON 格式的工具调用。 | |
- [`CodeAgent`] 是一种新型的 ToolCallingAgent,它生成代码块形式的工具调用,这对于具有强大编码性能的 LLM 非常有效。 | |