File size: 5,999 Bytes
2eb41d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from smolagents import (
    AgentError,
    AgentImage,
    CodeAgent,
    ToolCallingAgent,
    stream_to_gradio,
)
from smolagents.models import (
    ChatMessage,
    ChatMessageToolCall,
    ChatMessageToolCallDefinition,
)
from smolagents.monitoring import AgentLogger, LogLevel


class FakeLLMModel:
    def __init__(self):
        self.last_input_token_count = 10
        self.last_output_token_count = 20

    def __call__(self, prompt, tools_to_call_from=None, **kwargs):
        if tools_to_call_from is not None:
            return ChatMessage(
                role="assistant",
                content="",
                tool_calls=[
                    ChatMessageToolCall(
                        id="fake_id",
                        type="function",
                        function=ChatMessageToolCallDefinition(name="final_answer", arguments={"answer": "image"}),
                    )
                ],
            )
        else:
            return ChatMessage(
                role="assistant",
                content="""

Code:

```py

final_answer('This is the final answer.')

```""",
            )


class MonitoringTester(unittest.TestCase):
    def test_code_agent_metrics(self):
        agent = CodeAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
        )
        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 10)
        self.assertEqual(agent.monitor.total_output_token_count, 20)

    def test_toolcalling_agent_metrics(self):
        agent = ToolCallingAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
        )

        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 10)
        self.assertEqual(agent.monitor.total_output_token_count, 20)

    def test_code_agent_metrics_max_steps(self):
        class FakeLLMModelMalformedAnswer:
            def __init__(self):
                self.last_input_token_count = 10
                self.last_output_token_count = 20

            def __call__(self, prompt, **kwargs):
                return ChatMessage(role="assistant", content="Malformed answer")

        agent = CodeAgent(
            tools=[],
            model=FakeLLMModelMalformedAnswer(),
            max_steps=1,
        )

        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 20)
        self.assertEqual(agent.monitor.total_output_token_count, 40)

    def test_code_agent_metrics_generation_error(self):
        class FakeLLMModelGenerationException:
            def __init__(self):
                self.last_input_token_count = 10
                self.last_output_token_count = 20

            def __call__(self, prompt, **kwargs):
                self.last_input_token_count = 10
                self.last_output_token_count = 0
                raise Exception("Cannot generate")

        agent = CodeAgent(
            tools=[],
            model=FakeLLMModelGenerationException(),
            max_steps=1,
        )
        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 20)  # Should have done two monitoring callbacks
        self.assertEqual(agent.monitor.total_output_token_count, 0)

    def test_streaming_agent_text_output(self):
        agent = CodeAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
        )

        # Use stream_to_gradio to capture the output
        outputs = list(stream_to_gradio(agent, task="Test task"))

        self.assertEqual(len(outputs), 7)
        final_message = outputs[-1]
        self.assertEqual(final_message.role, "assistant")
        self.assertIn("This is the final answer.", final_message.content)

    def test_streaming_agent_image_output(self):
        agent = ToolCallingAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
        )

        # Use stream_to_gradio to capture the output
        outputs = list(
            stream_to_gradio(
                agent,
                task="Test task",
                additional_args=dict(image=AgentImage(value="path.png")),
            )
        )

        self.assertEqual(len(outputs), 5)
        final_message = outputs[-1]
        self.assertEqual(final_message.role, "assistant")
        self.assertIsInstance(final_message.content, dict)
        self.assertEqual(final_message.content["path"], "path.png")
        self.assertEqual(final_message.content["mime_type"], "image/png")

    def test_streaming_with_agent_error(self):
        logger = AgentLogger(level=LogLevel.INFO)

        def dummy_model(prompt, **kwargs):
            raise AgentError("Simulated agent error", logger)

        agent = CodeAgent(
            tools=[],
            model=dummy_model,
            max_steps=1,
        )

        # Use stream_to_gradio to capture the output
        outputs = list(stream_to_gradio(agent, task="Test task"))

        self.assertEqual(len(outputs), 9)
        final_message = outputs[-1]
        self.assertEqual(final_message.role, "assistant")
        self.assertIn("Simulated agent error", final_message.content)