Spaces:
Running
Running
File size: 11,596 Bytes
2eb41d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import unittest
from pathlib import Path
from typing import Optional
from unittest.mock import MagicMock, patch
import pytest
from transformers.testing_utils import get_tests_dir
from smolagents.models import (
ChatMessage,
HfApiModel,
LiteLLMModel,
MessageRole,
MLXModel,
OpenAIServerModel,
TransformersModel,
get_clean_message_list,
get_tool_json_schema,
parse_json_if_needed,
parse_tool_args_if_needed,
)
from smolagents.tools import tool
from .utils.markers import require_run_all
class ModelTests(unittest.TestCase):
def test_get_json_schema_has_nullable_args(self):
@tool
def get_weather(location: str, celsius: Optional[bool] = False) -> str:
"""
Get weather in the next days at given location.
Secretly this tool does not care about the location, it hates the weather everywhere.
Args:
location: the location
celsius: the temperature type
"""
return "The weather is UNGODLY with torrential rains and temperatures below -10°C"
assert "nullable" in get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"]
def test_chatmessage_has_model_dumps_json(self):
message = ChatMessage("user", [{"type": "text", "text": "Hello!"}])
data = json.loads(message.model_dump_json())
assert data["content"] == [{"type": "text", "text": "Hello!"}]
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
def test_get_mlx_message_no_tool(self):
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10)
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
output = model(messages, stop_sequences=["great"]).content
assert output.startswith("Hello")
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
def test_get_mlx_message_tricky_stop_sequence(self):
# In this test HuggingFaceTB/SmolLM2-135M-Instruct generates the token ">'"
# which is required to test capturing stop_sequences that have extra chars at the end.
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100)
stop_sequence = " print '>"
messages = [{"role": "user", "content": [{"type": "text", "text": f"Please{stop_sequence}'"}]}]
# check our assumption that that ">" is followed by "'"
assert model.tokenizer.vocab[">'"]
assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'"
# check stop_sequence capture when output has trailing chars
assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you"
def test_transformers_message_no_tool(self):
model = TransformersModel(
model_id="HuggingFaceTB/SmolLM2-135M-Instruct",
max_new_tokens=5,
device_map="cpu",
do_sample=False,
)
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
output = model(messages, stop_sequences=["great"]).content
assert output == "assistant\nHello"
def test_transformers_message_vl_no_tool(self):
from PIL import Image
img = Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png")
model = TransformersModel(
model_id="llava-hf/llava-interleave-qwen-0.5b-hf",
max_new_tokens=5,
device_map="cpu",
do_sample=False,
)
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}, {"type": "image", "image": img}]}]
output = model(messages, stop_sequences=["great"]).content
assert output == "Hello! How can"
def test_parse_tool_args_if_needed(self):
original_message = ChatMessage(role="user", content=[{"type": "text", "text": "Hello!"}])
parsed_message = parse_tool_args_if_needed(original_message)
assert parsed_message == original_message
def test_parse_json_if_needed(self):
args = "abc"
parsed_args = parse_json_if_needed(args)
assert parsed_args == "abc"
args = '{"a": 3}'
parsed_args = parse_json_if_needed(args)
assert parsed_args == {"a": 3}
args = "3"
parsed_args = parse_json_if_needed(args)
assert parsed_args == 3
args = 3
parsed_args = parse_json_if_needed(args)
assert parsed_args == 3
class TestHfApiModel:
def test_call_with_custom_role_conversions(self):
custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM}
model = HfApiModel(model_id="test-model", custom_role_conversions=custom_role_conversions)
model.client = MagicMock()
messages = [{"role": "user", "content": "Test message"}]
_ = model(messages)
# Verify that the role conversion was applied
assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", (
"role conversion should be applied"
)
@require_run_all
def test_get_hfapi_message_no_tool(self):
model = HfApiModel(model="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10)
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
model(messages, stop_sequences=["great"])
@require_run_all
def test_get_hfapi_message_no_tool_external_provider(self):
model = HfApiModel(model="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10)
messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}]
model(messages, stop_sequences=["great"])
class TestLiteLLMModel:
@pytest.mark.parametrize(
"model_id, error_flag",
[
("groq/llama-3.3-70b", "Missing API Key"),
("cerebras/llama-3.3-70b", "The api_key client option must be set"),
("mistral/mistral-tiny", "The api_key client option must be set"),
],
)
def test_call_different_providers_without_key(self, model_id, error_flag):
model = LiteLLMModel(model_id=model_id)
messages = [{"role": "user", "content": [{"type": "text", "text": "Test message"}]}]
with pytest.raises(Exception) as e:
# This should raise 401 error because of missing API key, not fail for any "bad format" reason
model(messages)
assert error_flag in str(e)
def test_passing_flatten_messages(self):
model = LiteLLMModel(model_id="groq/llama-3.3-70b", flatten_messages_as_text=False)
assert not model.flatten_messages_as_text
model = LiteLLMModel(model_id="fal/llama-3.3-70b", flatten_messages_as_text=True)
assert model.flatten_messages_as_text
class TestOpenAIServerModel:
def test_client_kwargs_passed_correctly(self):
model_id = "gpt-3.5-turbo"
api_base = "https://api.openai.com/v1"
api_key = "test_api_key"
organization = "test_org"
project = "test_project"
client_kwargs = {"max_retries": 5}
with patch("openai.OpenAI") as MockOpenAI:
_ = OpenAIServerModel(
model_id=model_id,
api_base=api_base,
api_key=api_key,
organization=organization,
project=project,
client_kwargs=client_kwargs,
)
MockOpenAI.assert_called_once_with(
base_url=api_base, api_key=api_key, organization=organization, project=project, max_retries=5
)
def test_get_clean_message_list_basic():
messages = [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
{"role": "assistant", "content": [{"type": "text", "text": "Hi there!"}]},
]
result = get_clean_message_list(messages)
assert len(result) == 2
assert result[0]["role"] == "user"
assert result[0]["content"][0]["text"] == "Hello!"
assert result[1]["role"] == "assistant"
assert result[1]["content"][0]["text"] == "Hi there!"
def test_get_clean_message_list_role_conversions():
messages = [
{"role": "tool-call", "content": [{"type": "text", "text": "Calling tool..."}]},
{"role": "tool-response", "content": [{"type": "text", "text": "Tool response"}]},
]
result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"})
assert len(result) == 2
assert result[0]["role"] == "assistant"
assert result[0]["content"][0]["text"] == "Calling tool..."
assert result[1]["role"] == "user"
assert result[1]["content"][0]["text"] == "Tool response"
@pytest.mark.parametrize(
"convert_images_to_image_urls, expected_clean_message",
[
(
False,
{
"role": "user",
"content": [
{"type": "image", "image": "encoded_image"},
{"type": "image", "image": "second_encoded_image"},
],
},
),
(
True,
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "_image"}},
{"type": "image_url", "image_url": {"url": "_encoded_image"}},
],
},
),
],
)
def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message):
messages = [
{
"role": "user",
"content": [{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}],
}
]
with patch("smolagents.models.encode_image_base64") as mock_encode:
mock_encode.side_effect = ["encoded_image", "second_encoded_image"]
result = get_clean_message_list(messages, convert_images_to_image_urls=convert_images_to_image_urls)
mock_encode.assert_any_call(b"image_data")
mock_encode.assert_any_call(b"second_image_data")
assert len(result) == 1
assert result[0] == expected_clean_message
def test_get_clean_message_list_flatten_messages_as_text():
messages = [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
{"role": "user", "content": [{"type": "text", "text": "How are you?"}]},
]
result = get_clean_message_list(messages, flatten_messages_as_text=True)
assert len(result) == 1
assert result[0]["role"] == "user"
assert result[0]["content"] == "Hello!How are you?"
|