Spaces:
Running
Running
File size: 42,465 Bytes
2eb41d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import random
import uuid
from copy import deepcopy
from dataclasses import asdict, dataclass
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from huggingface_hub import InferenceClient
from huggingface_hub.utils import is_torch_available
from PIL import Image
from .tools import Tool
from .utils import _is_package_available, encode_image_base64, make_image_url
if TYPE_CHECKING:
from transformers import StoppingCriteriaList
logger = logging.getLogger(__name__)
DEFAULT_JSONAGENT_REGEX_GRAMMAR = {
"type": "regex",
"value": 'Thought: .+?\\nAction:\\n\\{\\n\\s{4}"action":\\s"[^"\\n]+",\\n\\s{4}"action_input":\\s"[^"\\n]+"\\n\\}\\n<end_code>',
}
DEFAULT_CODEAGENT_REGEX_GRAMMAR = {
"type": "regex",
"value": "Thought: .+?\\nCode:\\n```(?:py|python)?\\n(?:.|\\s)+?\\n```<end_code>",
}
def get_dict_from_nested_dataclasses(obj, ignore_key=None):
def convert(obj):
if hasattr(obj, "__dataclass_fields__"):
return {k: convert(v) for k, v in asdict(obj).items() if k != ignore_key}
return obj
return convert(obj)
@dataclass
class ChatMessageToolCallDefinition:
arguments: Any
name: str
description: Optional[str] = None
@classmethod
def from_hf_api(cls, tool_call_definition) -> "ChatMessageToolCallDefinition":
return cls(
arguments=tool_call_definition.arguments,
name=tool_call_definition.name,
description=tool_call_definition.description,
)
@dataclass
class ChatMessageToolCall:
function: ChatMessageToolCallDefinition
id: str
type: str
@classmethod
def from_hf_api(cls, tool_call) -> "ChatMessageToolCall":
return cls(
function=ChatMessageToolCallDefinition.from_hf_api(tool_call.function),
id=tool_call.id,
type=tool_call.type,
)
@dataclass
class ChatMessage:
role: str
content: Optional[str] = None
tool_calls: Optional[List[ChatMessageToolCall]] = None
raw: Optional[Any] = None # Stores the raw output from the API
def model_dump_json(self):
return json.dumps(get_dict_from_nested_dataclasses(self, ignore_key="raw"))
@classmethod
def from_hf_api(cls, message, raw) -> "ChatMessage":
tool_calls = None
if getattr(message, "tool_calls", None) is not None:
tool_calls = [ChatMessageToolCall.from_hf_api(tool_call) for tool_call in message.tool_calls]
return cls(role=message.role, content=message.content, tool_calls=tool_calls, raw=raw)
@classmethod
def from_dict(cls, data: dict) -> "ChatMessage":
if data.get("tool_calls"):
tool_calls = [
ChatMessageToolCall(
function=ChatMessageToolCallDefinition(**tc["function"]), id=tc["id"], type=tc["type"]
)
for tc in data["tool_calls"]
]
data["tool_calls"] = tool_calls
return cls(**data)
def dict(self):
return json.dumps(get_dict_from_nested_dataclasses(self))
def parse_json_if_needed(arguments: Union[str, dict]) -> Union[str, dict]:
if isinstance(arguments, dict):
return arguments
else:
try:
return json.loads(arguments)
except Exception:
return arguments
def parse_tool_args_if_needed(message: ChatMessage) -> ChatMessage:
if message.tool_calls is not None:
for tool_call in message.tool_calls:
tool_call.function.arguments = parse_json_if_needed(tool_call.function.arguments)
return message
class MessageRole(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
TOOL_CALL = "tool-call"
TOOL_RESPONSE = "tool-response"
@classmethod
def roles(cls):
return [r.value for r in cls]
tool_role_conversions = {
MessageRole.TOOL_CALL: MessageRole.ASSISTANT,
MessageRole.TOOL_RESPONSE: MessageRole.USER,
}
def get_tool_json_schema(tool: Tool) -> Dict:
properties = deepcopy(tool.inputs)
required = []
for key, value in properties.items():
if value["type"] == "any":
value["type"] = "string"
if not ("nullable" in value and value["nullable"]):
required.append(key)
return {
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": properties,
"required": required,
},
},
}
def remove_stop_sequences(content: str, stop_sequences: List[str]) -> str:
for stop_seq in stop_sequences:
if content[-len(stop_seq) :] == stop_seq:
content = content[: -len(stop_seq)]
return content
def get_clean_message_list(
message_list: List[Dict[str, str]],
role_conversions: Dict[MessageRole, MessageRole] = {},
convert_images_to_image_urls: bool = False,
flatten_messages_as_text: bool = False,
) -> List[Dict[str, str]]:
"""
Subsequent messages with the same role will be concatenated to a single message.
output_message_list is a list of messages that will be used to generate the final message that is chat template compatible with transformers LLM chat template.
Args:
message_list (`list[dict[str, str]]`): List of chat messages.
role_conversions (`dict[MessageRole, MessageRole]`, *optional* ): Mapping to convert roles.
convert_images_to_image_urls (`bool`, default `False`): Whether to convert images to image URLs.
flatten_messages_as_text (`bool`, default `False`): Whether to flatten messages as text.
"""
output_message_list = []
message_list = deepcopy(message_list) # Avoid modifying the original list
for message in message_list:
role = message["role"]
if role not in MessageRole.roles():
raise ValueError(f"Incorrect role {role}, only {MessageRole.roles()} are supported for now.")
if role in role_conversions:
message["role"] = role_conversions[role]
# encode images if needed
if isinstance(message["content"], list):
for element in message["content"]:
if element["type"] == "image":
assert not flatten_messages_as_text, f"Cannot use images with {flatten_messages_as_text=}"
if convert_images_to_image_urls:
element.update(
{
"type": "image_url",
"image_url": {"url": make_image_url(encode_image_base64(element.pop("image")))},
}
)
else:
element["image"] = encode_image_base64(element["image"])
if len(output_message_list) > 0 and message["role"] == output_message_list[-1]["role"]:
assert isinstance(message["content"], list), "Error: wrong content:" + str(message["content"])
if flatten_messages_as_text:
output_message_list[-1]["content"] += message["content"][0]["text"]
else:
output_message_list[-1]["content"] += message["content"]
else:
if flatten_messages_as_text:
content = message["content"][0]["text"]
else:
content = message["content"]
output_message_list.append({"role": message["role"], "content": content})
return output_message_list
class Model:
def __init__(self, **kwargs):
self.last_input_token_count = None
self.last_output_token_count = None
self.kwargs = kwargs
def _prepare_completion_kwargs(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
custom_role_conversions: Optional[Dict[str, str]] = None,
convert_images_to_image_urls: bool = False,
flatten_messages_as_text: bool = False,
**kwargs,
) -> Dict:
"""
Prepare parameters required for model invocation, handling parameter priorities.
Parameter priority from high to low:
1. Explicitly passed kwargs
2. Specific parameters (stop_sequences, grammar, etc.)
3. Default values in self.kwargs
"""
# Clean and standardize the message list
messages = get_clean_message_list(
messages,
role_conversions=custom_role_conversions or tool_role_conversions,
convert_images_to_image_urls=convert_images_to_image_urls,
flatten_messages_as_text=flatten_messages_as_text,
)
# Use self.kwargs as the base configuration
completion_kwargs = {
**self.kwargs,
"messages": messages,
}
# Handle specific parameters
if stop_sequences is not None:
completion_kwargs["stop"] = stop_sequences
if grammar is not None:
completion_kwargs["grammar"] = grammar
# Handle tools parameter
if tools_to_call_from:
completion_kwargs.update(
{
"tools": [get_tool_json_schema(tool) for tool in tools_to_call_from],
"tool_choice": "required",
}
)
# Finally, use the passed-in kwargs to override all settings
completion_kwargs.update(kwargs)
return completion_kwargs
def get_token_counts(self) -> Dict[str, int]:
return {
"input_token_count": self.last_input_token_count,
"output_token_count": self.last_output_token_count,
}
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
**kwargs,
) -> ChatMessage:
"""Process the input messages and return the model's response.
Parameters:
messages (`List[Dict[str, str]]`):
A list of message dictionaries to be processed. Each dictionary should have the structure `{"role": "user/system", "content": "message content"}`.
stop_sequences (`List[str]`, *optional*):
A list of strings that will stop the generation if encountered in the model's output.
grammar (`str`, *optional*):
The grammar or formatting structure to use in the model's response.
tools_to_call_from (`List[Tool]`, *optional*):
A list of tools that the model can use to generate responses.
**kwargs:
Additional keyword arguments to be passed to the underlying model.
Returns:
`ChatMessage`: A chat message object containing the model's response.
"""
pass # To be implemented in child classes!
def to_dict(self) -> Dict:
"""
Converts the model into a JSON-compatible dictionary.
"""
model_dictionary = {
**self.kwargs,
"last_input_token_count": self.last_input_token_count,
"last_output_token_count": self.last_output_token_count,
"model_id": self.model_id,
}
for attribute in [
"custom_role_conversion",
"temperature",
"max_tokens",
"provider",
"timeout",
"api_base",
"torch_dtype",
"device_map",
"organization",
"project",
"azure_endpoint",
]:
if hasattr(self, attribute):
model_dictionary[attribute] = getattr(self, attribute)
dangerous_attributes = ["token", "api_key"]
for attribute_name in dangerous_attributes:
if hasattr(self, attribute_name):
print(
f"For security reasons, we do not export the `{attribute_name}` attribute of your model. Please export it manually."
)
return model_dictionary
@classmethod
def from_dict(cls, model_dictionary: Dict[str, Any]) -> "Model":
model_instance = cls(
**{
k: v
for k, v in model_dictionary.items()
if k not in ["last_input_token_count", "last_output_token_count"]
}
)
model_instance.last_input_token_count = model_dictionary.pop("last_input_token_count", None)
model_instance.last_output_token_count = model_dictionary.pop("last_output_token_count", None)
return model_instance
class HfApiModel(Model):
"""A class to interact with Hugging Face's Inference API for language model interaction.
This model allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.
Parameters:
model_id (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
provider (`str`, *optional*):
Name of the provider to use for inference. Can be `"replicate"`, `"together"`, `"fal-ai"`, `"sambanova"` or `"hf-inference"`.
defaults to hf-inference (HF Inference API).
token (`str`, *optional*):
Token used by the Hugging Face API for authentication. This token need to be authorized 'Make calls to the serverless Inference API'.
If the model is gated (like Llama-3 models), the token also needs 'Read access to contents of all public gated repos you can access'.
If not provided, the class will try to use environment variable 'HF_TOKEN', else use the token stored in the Hugging Face CLI configuration.
timeout (`int`, *optional*, defaults to 120):
Timeout for the API request, in seconds.
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
**kwargs:
Additional keyword arguments to pass to the Hugging Face API.
Raises:
ValueError:
If the model name is not provided.
Example:
```python
>>> engine = HfApiModel(
... model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
... token="your_hf_token_here",
... max_tokens=5000,
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
def __init__(
self,
model_id: str = "Qwen/Qwen2.5-Coder-32B-Instruct",
provider: Optional[str] = None,
token: Optional[str] = None,
timeout: Optional[int] = 120,
custom_role_conversions: Optional[Dict[str, str]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.model_id = model_id
self.provider = provider
if token is None:
token = os.getenv("HF_TOKEN")
self.client = InferenceClient(self.model_id, provider=provider, token=token, timeout=timeout)
self.custom_role_conversions = custom_role_conversions
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
grammar=grammar,
tools_to_call_from=tools_to_call_from,
convert_images_to_image_urls=True,
custom_role_conversions=self.custom_role_conversions,
**kwargs,
)
response = self.client.chat_completion(**completion_kwargs)
self.last_input_token_count = response.usage.prompt_tokens
self.last_output_token_count = response.usage.completion_tokens
message = ChatMessage.from_hf_api(response.choices[0].message, raw=response)
if tools_to_call_from is not None:
return parse_tool_args_if_needed(message)
return message
class MLXModel(Model):
"""A class to interact with models loaded using MLX on Apple silicon.
> [!TIP]
> You must have `mlx-lm` installed on your machine. Please run `pip install smolagents[mlx-lm]` if it's not the case.
Parameters:
model_id (str):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
tool_name_key (str):
The key, which can usually be found in the model's chat template, for retrieving a tool name.
tool_arguments_key (str):
The key, which can usually be found in the model's chat template, for retrieving tool arguments.
trust_remote_code (bool):
Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
kwargs (dict, *optional*):
Any additional keyword arguments that you want to use in model.generate(), for instance `max_tokens`.
Example:
```python
>>> engine = MLXModel(
... model_id="mlx-community/Qwen2.5-Coder-32B-Instruct-4bit",
... max_tokens=10000,
... )
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "text", "text": "Explain quantum mechanics in simple terms."}
... ]
... }
... ]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
def __init__(
self,
model_id: str,
tool_name_key: str = "name",
tool_arguments_key: str = "arguments",
trust_remote_code: bool = False,
**kwargs,
):
super().__init__(**kwargs)
if not _is_package_available("mlx_lm"):
raise ModuleNotFoundError(
"Please install 'mlx-lm' extra to use 'MLXModel': `pip install 'smolagents[mlx-lm]'`"
)
import mlx_lm
self.model_id = model_id
self.model, self.tokenizer = mlx_lm.load(model_id, tokenizer_config={"trust_remote_code": trust_remote_code})
self.stream_generate = mlx_lm.stream_generate
self.tool_name_key = tool_name_key
self.tool_arguments_key = tool_arguments_key
def _to_message(self, text, tools_to_call_from):
if tools_to_call_from:
# solution for extracting tool JSON without assuming a specific model output format
maybe_json = "{" + text.split("{", 1)[-1][::-1].split("}", 1)[-1][::-1] + "}"
parsed_text = json.loads(maybe_json)
tool_name = parsed_text.get(self.tool_name_key, None)
tool_arguments = parsed_text.get(self.tool_arguments_key, None)
if tool_name:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id=uuid.uuid4(),
type="function",
function=ChatMessageToolCallDefinition(name=tool_name, arguments=tool_arguments),
)
],
)
return ChatMessage(role="assistant", content=text)
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
flatten_messages_as_text=True, # mlx-lm doesn't support vision models
messages=messages,
stop_sequences=stop_sequences,
grammar=grammar,
tools_to_call_from=tools_to_call_from,
**kwargs,
)
messages = completion_kwargs.pop("messages")
prepared_stop_sequences = completion_kwargs.pop("stop", [])
tools = completion_kwargs.pop("tools", None)
completion_kwargs.pop("tool_choice", None)
prompt_ids = self.tokenizer.apply_chat_template(
messages,
tools=tools,
add_generation_prompt=True,
)
self.last_input_token_count = len(prompt_ids)
self.last_output_token_count = 0
text = ""
for _ in self.stream_generate(self.model, self.tokenizer, prompt=prompt_ids, **completion_kwargs):
self.last_output_token_count += 1
text += _.text
for stop_sequence in prepared_stop_sequences:
stop_sequence_start = text.rfind(stop_sequence)
if stop_sequence_start != -1:
text = text[:stop_sequence_start]
return self._to_message(text, tools_to_call_from)
return self._to_message(text, tools_to_call_from)
class TransformersModel(Model):
"""A class that uses Hugging Face's Transformers library for language model interaction.
This model allows you to load and use Hugging Face's models locally using the Transformers library. It supports features like stop sequences and grammar customization.
> [!TIP]
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
Parameters:
model_id (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
device_map (`str`, *optional*):
The device_map to initialize your model with.
torch_dtype (`str`, *optional*):
The torch_dtype to initialize your model with.
trust_remote_code (bool, default `False`):
Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
kwargs (dict, *optional*):
Any additional keyword arguments that you want to use in model.generate(), for instance `max_new_tokens` or `device`.
**kwargs:
Additional keyword arguments to pass to `model.generate()`, for instance `max_new_tokens` or `device`.
Raises:
ValueError:
If the model name is not provided.
Example:
```python
>>> engine = TransformersModel(
... model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
... device="cuda",
... max_new_tokens=5000,
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
def __init__(
self,
model_id: Optional[str] = None,
device_map: Optional[str] = None,
torch_dtype: Optional[str] = None,
trust_remote_code: bool = False,
**kwargs,
):
super().__init__(**kwargs)
if not is_torch_available() or not _is_package_available("transformers"):
raise ModuleNotFoundError(
"Please install 'transformers' extra to use 'TransformersModel': `pip install 'smolagents[transformers]'`"
)
import torch
from transformers import AutoModelForCausalLM, AutoModelForImageTextToText, AutoProcessor, AutoTokenizer
default_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
if model_id is None:
model_id = default_model_id
logger.warning(f"`model_id`not provided, using this default tokenizer for token counts: '{model_id}'")
self.model_id = model_id
default_max_tokens = 5000
max_new_tokens = kwargs.get("max_new_tokens") or kwargs.get("max_tokens")
if not max_new_tokens:
kwargs["max_new_tokens"] = default_max_tokens
logger.warning(
f"`max_new_tokens` not provided, using this default value for `max_new_tokens`: {default_max_tokens}"
)
self.kwargs = kwargs
if device_map is None:
device_map = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device_map}")
self._is_vlm = False
try:
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
)
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
except ValueError as e:
if "Unrecognized configuration class" in str(e):
self.model = AutoModelForImageTextToText.from_pretrained(model_id, device_map=device_map)
self.processor = AutoProcessor.from_pretrained(model_id)
self._is_vlm = True
else:
raise e
except Exception as e:
logger.warning(
f"Failed to load tokenizer and model for {model_id=}: {e}. Loading default tokenizer and model instead from {default_model_id=}."
)
self.model_id = default_model_id
self.tokenizer = AutoTokenizer.from_pretrained(default_model_id)
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device_map, torch_dtype=torch_dtype)
def make_stopping_criteria(self, stop_sequences: List[str], tokenizer) -> "StoppingCriteriaList":
from transformers import StoppingCriteria, StoppingCriteriaList
class StopOnStrings(StoppingCriteria):
def __init__(self, stop_strings: List[str], tokenizer):
self.stop_strings = stop_strings
self.tokenizer = tokenizer
self.stream = ""
def reset(self):
self.stream = ""
def __call__(self, input_ids, scores, **kwargs):
generated = self.tokenizer.decode(input_ids[0][-1], skip_special_tokens=True)
self.stream += generated
if any([self.stream.endswith(stop_string) for stop_string in self.stop_strings]):
return True
return False
return StoppingCriteriaList([StopOnStrings(stop_sequences, tokenizer)])
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
images: Optional[List[Image.Image]] = None,
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
grammar=grammar,
flatten_messages_as_text=(not self._is_vlm),
**kwargs,
)
messages = completion_kwargs.pop("messages")
stop_sequences = completion_kwargs.pop("stop", None)
max_new_tokens = (
kwargs.get("max_new_tokens")
or kwargs.get("max_tokens")
or self.kwargs.get("max_new_tokens")
or self.kwargs.get("max_tokens")
)
if max_new_tokens:
completion_kwargs["max_new_tokens"] = max_new_tokens
if hasattr(self, "processor"):
images = [Image.open(image) for image in images] if images else None
prompt_tensor = self.processor.apply_chat_template(
messages,
tools=[get_tool_json_schema(tool) for tool in tools_to_call_from] if tools_to_call_from else None,
return_tensors="pt",
tokenize=True,
return_dict=True,
images=images,
add_generation_prompt=True if tools_to_call_from else False,
)
else:
prompt_tensor = self.tokenizer.apply_chat_template(
messages,
tools=[get_tool_json_schema(tool) for tool in tools_to_call_from] if tools_to_call_from else None,
return_tensors="pt",
return_dict=True,
add_generation_prompt=True if tools_to_call_from else False,
)
prompt_tensor = prompt_tensor.to(self.model.device)
count_prompt_tokens = prompt_tensor["input_ids"].shape[1]
if stop_sequences:
stopping_criteria = self.make_stopping_criteria(
stop_sequences, tokenizer=self.processor if hasattr(self, "processor") else self.tokenizer
)
else:
stopping_criteria = None
out = self.model.generate(
**prompt_tensor,
stopping_criteria=stopping_criteria,
**completion_kwargs,
)
generated_tokens = out[0, count_prompt_tokens:]
if hasattr(self, "processor"):
output = self.processor.decode(generated_tokens, skip_special_tokens=True)
else:
output = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
self.last_input_token_count = count_prompt_tokens
self.last_output_token_count = len(generated_tokens)
if stop_sequences is not None:
output = remove_stop_sequences(output, stop_sequences)
if tools_to_call_from is None:
return ChatMessage(
role="assistant",
content=output,
raw={"out": out, "completion_kwargs": completion_kwargs},
)
else:
if "Action:" in output:
output = output.split("Action:", 1)[1].strip()
try:
start_index = output.index("{")
end_index = output.rindex("}")
output = output[start_index : end_index + 1]
except Exception as e:
raise Exception("No json blob found in output!") from e
try:
parsed_output = json.loads(output)
except json.JSONDecodeError as e:
raise ValueError(f"Tool call '{output}' has an invalid JSON structure: {e}")
tool_name = parsed_output.get("name")
tool_arguments = parsed_output.get("arguments")
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="".join(random.choices("0123456789", k=5)),
type="function",
function=ChatMessageToolCallDefinition(name=tool_name, arguments=tool_arguments),
)
],
raw={"out": out, "completion_kwargs": completion_kwargs},
)
class LiteLLMModel(Model):
"""This model connects to [LiteLLM](https://www.litellm.ai/) as a gateway to hundreds of LLMs.
Parameters:
model_id (`str`):
The model identifier to use on the server (e.g. "gpt-3.5-turbo").
api_base (`str`, *optional*):
The base URL of the OpenAI-compatible API server.
api_key (`str`, *optional*):
The API key to use for authentication.
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
**kwargs:
Additional keyword arguments to pass to the OpenAI API.
"""
def __init__(
self,
model_id: str = "deepseek/deepseek-chat",
api_base: Optional[str] = None,
api_key: Optional[str] = None,
custom_role_conversions: Optional[Dict[str, str]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.model_id = model_id
self.api_base = api_base
self.api_key = api_key
self.custom_role_conversions = custom_role_conversions
self.flatten_messages_as_text = (
kwargs.get("flatten_messages_as_text")
if "flatten_messages_as_text" in kwargs
else self.model_id.startswith(("ollama", "groq", "cerebras"))
)
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
**kwargs,
) -> ChatMessage:
try:
import litellm
except ModuleNotFoundError:
raise ModuleNotFoundError(
"Please install 'litellm' extra to use LiteLLMModel: `pip install 'smolagents[litellm]'`"
)
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
grammar=grammar,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
api_base=self.api_base,
api_key=self.api_key,
convert_images_to_image_urls=True,
flatten_messages_as_text=self.flatten_messages_as_text,
custom_role_conversions=self.custom_role_conversions,
**kwargs,
)
response = litellm.completion(**completion_kwargs, drop_params=True)
self.last_input_token_count = response.usage.prompt_tokens
self.last_output_token_count = response.usage.completion_tokens
message = ChatMessage.from_dict(
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
)
message.raw = response
if tools_to_call_from is not None:
return parse_tool_args_if_needed(message)
return message
class OpenAIServerModel(Model):
"""This model connects to an OpenAI-compatible API server.
Parameters:
model_id (`str`):
The model identifier to use on the server (e.g. "gpt-3.5-turbo").
api_base (`str`, *optional*):
The base URL of the OpenAI-compatible API server.
api_key (`str`, *optional*):
The API key to use for authentication.
organization (`str`, *optional*):
The organization to use for the API request.
project (`str`, *optional*):
The project to use for the API request.
client_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the OpenAI client (like organization, project, max_retries etc.).
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
**kwargs:
Additional keyword arguments to pass to the OpenAI API.
"""
def __init__(
self,
model_id: str = "deepseek-ai/deepseek-r1", # Default to DeepSeek-R1
api_base: Optional[str] = "https://integrate.api.nvidia.com/v1", # NVIDIA NIM API endpoint
api_key: Optional[str] = "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", # Your NVIDIA API key
organization: Optional[str] | None = None,
project: Optional[str] | None = None,
client_kwargs: Optional[Dict[str, Any]] = None,
custom_role_conversions: Optional[Dict[str, str]] = None,
**kwargs,
):
try:
import openai
except ModuleNotFoundError:
raise ModuleNotFoundError(
"Please install 'openai' extra to use OpenAIServerModel: `pip install 'smolagents[openai]'`"
) from None
super().__init__(**kwargs)
self.model_id = model_id
# Set default client kwargs if none provided
if client_kwargs is None:
client_kwargs = {"max_retries": 3}
self.client = openai.OpenAI(
base_url=api_base,
api_key=api_key,
organization=organization,
project=project,
**(client_kwargs or {}),
)
self.custom_role_conversions = custom_role_conversions
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
temperature: float = 0.6, # Default temperature for DeepSeek-R1
top_p: float = 0.7, # Default top_p for DeepSeek-R1
max_tokens: int = 4096, # Default max_tokens for DeepSeek-R1
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
grammar=grammar,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
custom_role_conversions=self.custom_role_conversions,
convert_images_to_image_urls=True,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
**kwargs,
)
response = self.client.chat.completions.create(**completion_kwargs)
self.last_input_token_count = response.usage.prompt_tokens
self.last_output_token_count = response.usage.completion_tokens
message = ChatMessage.from_dict(
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
)
message.raw = response
if tools_to_call_from is not None:
return parse_tool_args_if_needed(message)
return message
class AzureOpenAIServerModel(OpenAIServerModel):
"""This model connects to an Azure OpenAI deployment.
Parameters:
model_id (`str`):
The model deployment name to use when connecting (e.g. "gpt-4o-mini").
azure_endpoint (`str`, *optional*):
The Azure endpoint, including the resource, e.g. `https://example-resource.azure.openai.com/`. If not provided, it will be inferred from the `AZURE_OPENAI_ENDPOINT` environment variable.
api_key (`str`, *optional*):
The API key to use for authentication. If not provided, it will be inferred from the `AZURE_OPENAI_API_KEY` environment variable.
api_version (`str`, *optional*):
The API version to use. If not provided, it will be inferred from the `OPENAI_API_VERSION` environment variable.
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
**kwargs:
Additional keyword arguments to pass to the Azure OpenAI API.
"""
def __init__(
self,
model_id: str,
azure_endpoint: Optional[str] = None,
api_key: Optional[str] = None,
api_version: Optional[str] = None,
custom_role_conversions: Optional[Dict[str, str]] = None,
**kwargs,
):
# read the api key manually, to avoid super().__init__() trying to use the wrong api_key (OPENAI_API_KEY)
if api_key is None:
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
super().__init__(model_id=model_id, api_key=api_key, custom_role_conversions=custom_role_conversions, **kwargs)
# if we've reached this point, it means the openai package is available (checked in baseclass) so go ahead and import it
import openai
self.client = openai.AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=azure_endpoint)
__all__ = [
"MessageRole",
"tool_role_conversions",
"get_clean_message_list",
"Model",
"MLXModel",
"TransformersModel",
"HfApiModel",
"LiteLLMModel",
"OpenAIServerModel",
"AzureOpenAIServerModel",
"ChatMessage",
]
|