File size: 8,700 Bytes
2eb41d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from dataclasses import asdict, dataclass
from logging import getLogger
from typing import TYPE_CHECKING, Any, Dict, List, TypedDict, Union

from smolagents.models import ChatMessage, MessageRole
from smolagents.monitoring import AgentLogger, LogLevel
from smolagents.utils import AgentError, make_json_serializable


if TYPE_CHECKING:
    from smolagents.models import ChatMessage
    from smolagents.monitoring import AgentLogger


logger = getLogger(__name__)


class Message(TypedDict):
    role: MessageRole
    content: str | list[dict]


@dataclass
class ToolCall:
    name: str
    arguments: Any
    id: str

    def dict(self):
        return {
            "id": self.id,
            "type": "function",
            "function": {
                "name": self.name,
                "arguments": make_json_serializable(self.arguments),
            },
        }


@dataclass
class MemoryStep:
    def dict(self):
        return asdict(self)

    def to_messages(self, **kwargs) -> List[Dict[str, Any]]:
        raise NotImplementedError


@dataclass
class ActionStep(MemoryStep):
    model_input_messages: List[Message] | None = None
    tool_calls: List[ToolCall] | None = None
    start_time: float | None = None
    end_time: float | None = None
    step_number: int | None = None
    error: AgentError | None = None
    duration: float | None = None
    model_output_message: ChatMessage = None
    model_output: str | None = None
    observations: str | None = None
    observations_images: List[str] | None = None
    action_output: Any = None

    def dict(self):
        # We overwrite the method to parse the tool_calls and action_output manually
        return {
            "model_input_messages": self.model_input_messages,
            "tool_calls": [tc.dict() for tc in self.tool_calls] if self.tool_calls else [],
            "start_time": self.start_time,
            "end_time": self.end_time,
            "step": self.step_number,
            "error": self.error.dict() if self.error else None,
            "duration": self.duration,
            "model_output_message": self.model_output_message,
            "model_output": self.model_output,
            "observations": self.observations,
            "action_output": make_json_serializable(self.action_output),
        }

    def to_messages(self, summary_mode: bool = False, show_model_input_messages: bool = False) -> List[Message]:
        messages = []
        if self.model_input_messages is not None and show_model_input_messages:
            messages.append(Message(role=MessageRole.SYSTEM, content=self.model_input_messages))
        if self.model_output is not None and not summary_mode:
            messages.append(
                Message(role=MessageRole.ASSISTANT, content=[{"type": "text", "text": self.model_output.strip()}])
            )

        if self.tool_calls is not None:
            messages.append(
                Message(
                    role=MessageRole.ASSISTANT,
                    content=[
                        {
                            "type": "text",
                            "text": "Calling tools:\n" + str([tc.dict() for tc in self.tool_calls]),
                        }
                    ],
                )
            )

        if self.observations is not None:
            messages.append(
                Message(
                    role=MessageRole.TOOL_RESPONSE,
                    content=[
                        {
                            "type": "text",
                            "text": f"Call id: {self.tool_calls[0].id}\nObservation:\n{self.observations}",
                        }
                    ],
                )
            )
        if self.error is not None:
            error_message = (
                "Error:\n"
                + str(self.error)
                + "\nNow let's retry: take care not to repeat previous errors! If you have retried several times, try a completely different approach.\n"
            )
            message_content = f"Call id: {self.tool_calls[0].id}\n" if self.tool_calls else ""
            message_content += error_message
            messages.append(
                Message(role=MessageRole.TOOL_RESPONSE, content=[{"type": "text", "text": message_content}])
            )

        if self.observations_images:
            messages.append(
                Message(
                    role=MessageRole.USER,
                    content=[{"type": "text", "text": "Here are the observed images:"}]
                    + [
                        {
                            "type": "image",
                            "image": image,
                        }
                        for image in self.observations_images
                    ],
                )
            )
        return messages


@dataclass
class PlanningStep(MemoryStep):
    model_input_messages: List[Message]
    model_output_message_facts: ChatMessage
    facts: str
    model_output_message_plan: ChatMessage
    plan: str

    def to_messages(self, summary_mode: bool, **kwargs) -> List[Message]:
        messages = []
        messages.append(
            Message(
                role=MessageRole.ASSISTANT, content=[{"type": "text", "text": f"[FACTS LIST]:\n{self.facts.strip()}"}]
            )
        )

        if not summary_mode:  # This step is not shown to a model writing a plan to avoid influencing the new plan
            messages.append(
                Message(
                    role=MessageRole.ASSISTANT, content=[{"type": "text", "text": f"[PLAN]:\n{self.plan.strip()}"}]
                )
            )
        return messages


@dataclass
class TaskStep(MemoryStep):
    task: str
    task_images: List[str] | None = None

    def to_messages(self, summary_mode: bool = False, **kwargs) -> List[Message]:
        content = [{"type": "text", "text": f"New task:\n{self.task}"}]
        if self.task_images:
            for image in self.task_images:
                content.append({"type": "image", "image": image})

        return [Message(role=MessageRole.USER, content=content)]


@dataclass
class SystemPromptStep(MemoryStep):
    system_prompt: str

    def to_messages(self, summary_mode: bool = False, **kwargs) -> List[Message]:
        if summary_mode:
            return []
        return [Message(role=MessageRole.SYSTEM, content=[{"type": "text", "text": self.system_prompt}])]


class AgentMemory:
    def __init__(self, system_prompt: str):
        self.system_prompt = SystemPromptStep(system_prompt=system_prompt)
        self.steps: List[Union[TaskStep, ActionStep, PlanningStep]] = []

    def reset(self):
        self.steps = []

    def get_succinct_steps(self) -> list[dict]:
        return [
            {key: value for key, value in step.dict().items() if key != "model_input_messages"} for step in self.steps
        ]

    def get_full_steps(self) -> list[dict]:
        return [step.dict() for step in self.steps]

    def replay(self, logger: AgentLogger, detailed: bool = False):
        """Prints a pretty replay of the agent's steps.



        Args:

            logger (AgentLogger): The logger to print replay logs to.

            detailed (bool, optional): If True, also displays the memory at each step. Defaults to False.

                Careful: will increase log length exponentially. Use only for debugging.

        """
        logger.console.log("Replaying the agent's steps:")
        for step in self.steps:
            if isinstance(step, SystemPromptStep) and detailed:
                logger.log_markdown(title="System prompt", content=step.system_prompt, level=LogLevel.ERROR)
            elif isinstance(step, TaskStep):
                logger.log_task(step.task, "", level=LogLevel.ERROR)
            elif isinstance(step, ActionStep):
                logger.log_rule(f"Step {step.step_number}", level=LogLevel.ERROR)
                if detailed:
                    logger.log_messages(step.model_input_messages)
                logger.log_markdown(title="Agent output:", content=step.model_output, level=LogLevel.ERROR)
            elif isinstance(step, PlanningStep):
                logger.log_rule("Planning step", level=LogLevel.ERROR)
                if detailed:
                    logger.log_messages(step.model_input_messages, level=LogLevel.ERROR)
                logger.log_markdown(title="Agent output:", content=step.facts + "\n" + step.plan, level=LogLevel.ERROR)


__all__ = ["AgentMemory"]