Spaces:
Running
Running
File size: 11,393 Bytes
2eb41d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from dataclasses import dataclass
from typing import Any, Dict, Optional
from .local_python_executor import (
BASE_BUILTIN_MODULES,
BASE_PYTHON_TOOLS,
evaluate_python_code,
)
from .tools import PipelineTool, Tool
@dataclass
class PreTool:
name: str
inputs: Dict[str, str]
output_type: type
task: str
description: str
repo_id: str
class PythonInterpreterTool(Tool):
name = "python_interpreter"
description = "This is a tool that evaluates python code. It can be used to perform calculations."
inputs = {
"code": {
"type": "string",
"description": "The python code to run in interpreter",
}
}
output_type = "string"
def __init__(self, *args, authorized_imports=None, **kwargs):
if authorized_imports is None:
self.authorized_imports = list(set(BASE_BUILTIN_MODULES))
else:
self.authorized_imports = list(set(BASE_BUILTIN_MODULES) | set(authorized_imports))
self.inputs = {
"code": {
"type": "string",
"description": (
"The code snippet to evaluate. All variables used in this snippet must be defined in this same snippet, "
f"else you will get an error. This code can only import the following python libraries: {authorized_imports}."
),
}
}
self.base_python_tools = BASE_PYTHON_TOOLS
self.python_evaluator = evaluate_python_code
super().__init__(*args, **kwargs)
def forward(self, code: str) -> str:
state = {}
output = str(
self.python_evaluator(
code,
state=state,
static_tools=self.base_python_tools,
authorized_imports=self.authorized_imports,
)[0] # The second element is boolean is_final_answer
)
return f"Stdout:\n{str(state['_print_outputs'])}\nOutput: {output}"
class FinalAnswerTool(Tool):
name = "final_answer"
description = "Provides a final answer to the given problem."
inputs = {"answer": {"type": "any", "description": "The final answer to the problem"}}
output_type = "any"
def forward(self, answer: Any) -> Any:
return answer
class UserInputTool(Tool):
name = "user_input"
description = "Asks for user's input on a specific question"
inputs = {"question": {"type": "string", "description": "The question to ask the user"}}
output_type = "string"
def forward(self, question):
user_input = input(f"{question} => Type your answer here:")
return user_input
class DuckDuckGoSearchTool(Tool):
name = "web_search"
description = """Performs a duckduckgo web search based on your query (think a Google search) then returns the top search results."""
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
output_type = "string"
def __init__(self, max_results=10, **kwargs):
super().__init__()
self.max_results = max_results
try:
from duckduckgo_search import DDGS
except ImportError as e:
raise ImportError(
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
) from e
self.ddgs = DDGS(**kwargs)
def forward(self, query: str) -> str:
results = self.ddgs.text(query, max_results=self.max_results)
if len(results) == 0:
raise Exception("No results found! Try a less restrictive/shorter query.")
postprocessed_results = [f"[{result['title']}]({result['href']})\n{result['body']}" for result in results]
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
class GoogleSearchTool(Tool):
name = "web_search"
description = """Performs a google web search for your query then returns a string of the top search results."""
inputs = {
"query": {"type": "string", "description": "The search query to perform."},
"filter_year": {
"type": "integer",
"description": "Optionally restrict results to a certain year",
"nullable": True,
},
}
output_type = "string"
def __init__(self, provider: str = "serpapi"):
super().__init__()
import os
self.provider = provider
if provider == "serpapi":
self.organic_key = "organic_results"
api_key_env_name = "SERPAPI_API_KEY"
else:
self.organic_key = "organic"
api_key_env_name = "SERPER_API_KEY"
self.api_key = os.getenv(api_key_env_name)
if self.api_key is None:
raise ValueError(f"Missing API key. Make sure you have '{api_key_env_name}' in your env variables.")
def forward(self, query: str, filter_year: Optional[int] = None) -> str:
import requests
if self.provider == "serpapi":
params = {
"q": query,
"api_key": self.api_key,
"engine": "google",
"google_domain": "google.com",
}
base_url = "https://serpapi.com/search.json"
else:
params = {
"q": query,
"api_key": self.api_key,
}
base_url = "https://google.serper.dev/search"
if filter_year is not None:
params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}"
response = requests.get(base_url, params=params)
if response.status_code == 200:
results = response.json()
else:
raise ValueError(response.json())
if self.organic_key not in results.keys():
if filter_year is not None:
raise Exception(
f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year."
)
else:
raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.")
if len(results[self.organic_key]) == 0:
year_filter_message = f" with filter year={filter_year}" if filter_year is not None else ""
return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter."
web_snippets = []
if self.organic_key in results:
for idx, page in enumerate(results[self.organic_key]):
date_published = ""
if "date" in page:
date_published = "\nDate published: " + page["date"]
source = ""
if "source" in page:
source = "\nSource: " + page["source"]
snippet = ""
if "snippet" in page:
snippet = "\n" + page["snippet"]
redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}"
web_snippets.append(redacted_version)
return "## Search Results\n" + "\n\n".join(web_snippets)
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = (
"Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
)
inputs = {
"url": {
"type": "string",
"description": "The url of the webpage to visit.",
}
}
output_type = "string"
def forward(self, url: str) -> str:
try:
import requests
from markdownify import markdownify
from requests.exceptions import RequestException
from smolagents.utils import truncate_content
except ImportError as e:
raise ImportError(
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
) from e
try:
# Send a GET request to the URL with a 20-second timeout
response = requests.get(url, timeout=20)
response.raise_for_status() # Raise an exception for bad status codes
# Convert the HTML content to Markdown
markdown_content = markdownify(response.text).strip()
# Remove multiple line breaks
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
class SpeechToTextTool(PipelineTool):
default_checkpoint = "openai/whisper-large-v3-turbo"
description = "This is a tool that transcribes an audio into text. It returns the transcribed text."
name = "transcriber"
inputs = {
"audio": {
"type": "audio",
"description": "The audio to transcribe. Can be a local path, an url, or a tensor.",
}
}
output_type = "string"
def __new__(cls, *args, **kwargs):
from transformers.models.whisper import (
WhisperForConditionalGeneration,
WhisperProcessor,
)
cls.pre_processor_class = WhisperProcessor
cls.model_class = WhisperForConditionalGeneration
return super().__new__(cls, *args, **kwargs)
def encode(self, audio):
from .agent_types import AgentAudio
audio = AgentAudio(audio).to_raw()
return self.pre_processor(audio, return_tensors="pt")
def forward(self, inputs):
return self.model.generate(inputs["input_features"])
def decode(self, outputs):
return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0]
TOOL_MAPPING = {
tool_class.name: tool_class
for tool_class in [
PythonInterpreterTool,
DuckDuckGoSearchTool,
VisitWebpageTool,
]
}
__all__ = [
"PythonInterpreterTool",
"FinalAnswerTool",
"UserInputTool",
"DuckDuckGoSearchTool",
"GoogleSearchTool",
"VisitWebpageTool",
"SpeechToTextTool",
]
|