Spaces:
Running
Running
File size: 4,726 Bytes
2eb41d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import argparse
import os
import threading
from dotenv import load_dotenv
#from huggingface_hub import login
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import visualizer
from smolagents import (
CodeAgent,
GoogleSearchTool,
# HfApiModel,
LiteLLMModel,
ToolCallingAgent,
)
from smolagents.models import OpenAIServerModel
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
#login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"question", type=str, help="for example: 'How many studio albums did Mercedes Sosa release before 2007?'"
)
parser.add_argument("--model-id", type=str, default="o1")
return parser.parse_args()
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
def create_agent(model_id="o1"):
model_params = {
"model_id": model_id,
"custom_role_conversions": custom_role_conversions,
"max_completion_tokens": 8192,
}
if model_id == "o1":
model_params["reasoning_effort"] = "high"
model = LiteLLMModel(
model_id="deepseek/deepseek-chat",
api_key=os.getenv("DEEPSEEK_API_KEY"),
temperature=0.2,
top_p=0.7,
max_tokens=8192
)
text_limit = 100000
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
GoogleSearchTool(provider="serper"),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
text_webbrowser_agent = ToolCallingAgent(
model=model,
tools=WEB_TOOLS,
max_steps=1,
verbosity_level=2,
planning_interval=3,
name="search_agent",
description="""A team member that will search the internet to answer your question.
Ask him for all your questions that require browsing the web.
Provide him as much context as possible, in particular if you need to search on a specific timeframe!
And don't hesitate to provide him with a complex search task, like finding a difference between two webpages.
Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords.
""",
provide_run_summary=True,
)
text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files.
If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it.
Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information."""
manager_agent = CodeAgent(
model=model,
tools=[visualizer, TextInspectorTool(model, text_limit)],
max_steps=3,
verbosity_level=2,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=5,
managed_agents=[text_webbrowser_agent],
name="MoonshotAI_Deep_Research",
description="An Moonshoot deep research agent that can search the web and analyze information about your startup idea's novelty level and more"
)
return manager_agent
def main():
args = parse_args()
agent = create_agent(model_id=args.model_id)
answer = agent.run(args.question)
print(f"Got this answer: {answer}")
if __name__ == "__main__":
main()
|