Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
app = FastAPI(
|
7 |
+
title = "Hate Speech Detection API",
|
8 |
+
description = "A simple API to classify text using the unitary/toxic-bert model.",
|
9 |
+
version = "1.0.0"
|
10 |
+
)
|
11 |
+
|
12 |
+
classifier= pipeline("text-classification" , model="unitary/toxic-bert", tokenizer="unitary/toxic-bert", device=-1)
|
13 |
+
|
14 |
+
#writing pydantic models
|
15 |
+
class TextInput(BaseModel):
|
16 |
+
text: str
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
@app.get("/")
|
21 |
+
def get_root():
|
22 |
+
return {"message": "Welcome to the Hate Speech Detection API!"}
|
23 |
+
|
24 |
+
@app.post("/predict")
|
25 |
+
def predict_toxicity(input: TextInput):
|
26 |
+
classifier_result = classifier(input.text)
|
27 |
+
prediction=list(classifier_result)[0]
|
28 |
+
final_prediction = {}
|
29 |
+
if prediction['score']>0.5:
|
30 |
+
final_prediction['label']='Toxic'
|
31 |
+
final_prediction['non-toxic-score']=1-prediction['score']
|
32 |
+
final_prediction['toxic-score']=prediction['score']
|
33 |
+
else:
|
34 |
+
final_prediction['label']='Non-Toxic'
|
35 |
+
final_prediction['non-toxic-score']=1- prediction['score']
|
36 |
+
final_prediction['toxic-score']=prediction['score']
|
37 |
+
|
38 |
+
return final_prediction
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|