Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,148 +1,167 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import uuid
|
5 |
import subprocess
|
6 |
import threading
|
7 |
import os
|
8 |
import time
|
9 |
-
from fastapi import FastAPI
|
10 |
-
from fastapi.responses import FileResponse
|
11 |
-
import asyncio
|
12 |
import sys
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
# A simple in-memory dictionary to track task status.
|
16 |
-
# For a production system, you'd use a database or Redis.
|
17 |
-
tasks = {}
|
18 |
sys.path.insert(0, os.getcwd())
|
|
|
19 |
# --- Download Kokoro models if they don't exist ---
|
20 |
model_dir = "models"
|
21 |
-
|
|
|
|
|
|
|
22 |
print("Downloading Kokoro TTS models...")
|
23 |
os.makedirs(model_dir, exist_ok=True)
|
24 |
-
|
25 |
-
os.system(f"wget -
|
|
|
26 |
print("Model download complete.")
|
27 |
|
|
|
|
|
|
|
28 |
def run_video_generation(task_id: str, topic: str, context: str, model: str):
|
29 |
"""
|
30 |
-
|
31 |
"""
|
32 |
tasks[task_id]['status'] = 'running'
|
|
|
33 |
|
34 |
-
# Sanitize topic to create a valid directory
|
35 |
-
file_prefix =
|
|
|
36 |
output_dir = os.path.join("output", file_prefix)
|
37 |
|
|
|
38 |
command = [
|
39 |
-
"python", "generate_video.py",
|
40 |
"--model", model,
|
41 |
"--topic", topic,
|
42 |
"--context", context,
|
43 |
-
"--output_dir",
|
44 |
-
#
|
45 |
]
|
46 |
|
47 |
try:
|
48 |
-
#
|
49 |
-
process = subprocess.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
if
|
54 |
-
for
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
62 |
else:
|
63 |
tasks[task_id]['status'] = 'failed'
|
64 |
-
tasks[task_id]['error'] = "
|
65 |
-
|
66 |
-
|
67 |
-
tasks[task_id]['status'] = 'failed'
|
68 |
-
tasks[task_id]['error'] = str(e)
|
69 |
except Exception as e:
|
|
|
70 |
tasks[task_id]['status'] = 'failed'
|
71 |
tasks[task_id]['error'] = str(e)
|
|
|
72 |
|
73 |
def start_generation(topic: str, context: str, model: str):
|
74 |
if not all([topic, context, model]):
|
75 |
return "Topic, Context, and Model cannot be empty.", ""
|
76 |
|
77 |
task_id = str(uuid.uuid4())
|
78 |
-
tasks[task_id] = {'status': 'queued', 'model': model}
|
79 |
|
80 |
-
# Use a background thread to run the time-consuming task
|
81 |
thread = threading.Thread(
|
82 |
target=run_video_generation,
|
83 |
args=(task_id, topic, context, model)
|
84 |
)
|
85 |
thread.start()
|
86 |
|
87 |
-
return f"Task started with
|
88 |
|
89 |
def check_status(task_id: str):
|
90 |
if not task_id:
|
91 |
-
return "Please provide a Task ID.", None
|
92 |
|
93 |
task = tasks.get(task_id)
|
94 |
if not task:
|
95 |
-
return "Task not found.", None
|
96 |
|
97 |
status = task.get('status')
|
98 |
model = task.get('model', 'Unknown')
|
|
|
99 |
|
100 |
if status == 'completed':
|
101 |
video_path = task.get('video_path')
|
102 |
-
|
|
|
103 |
elif status == 'failed':
|
104 |
error = task.get('error', 'Unknown error')
|
105 |
-
|
|
|
106 |
|
107 |
-
|
|
|
108 |
|
109 |
# Create the Gradio interface
|
110 |
-
with gr.Blocks(title="Theorem Explain Agent") as demo:
|
111 |
-
gr.Markdown("# π Theorem
|
112 |
-
gr.Markdown("Generate educational videos explaining mathematical theorems and concepts.")
|
113 |
|
114 |
with gr.Tab("π Start Generation"):
|
115 |
-
gr.Markdown("### Enter the details for your video
|
116 |
-
model_input = gr.
|
117 |
label="Model",
|
118 |
-
|
119 |
-
value="gemini/gemini-1.5-flash"
|
120 |
-
|
121 |
-
topic_input = gr.Textbox(
|
122 |
-
label="Topic",
|
123 |
-
placeholder="e.g., The Pythagorean Theorem"
|
124 |
-
)
|
125 |
-
context_input = gr.Textbox(
|
126 |
-
label="Context",
|
127 |
-
placeholder="A short explanation of the theorem.",
|
128 |
-
lines=3
|
129 |
)
|
|
|
|
|
130 |
start_button = gr.Button("π¬ Generate Video", variant="primary")
|
131 |
|
|
|
132 |
with gr.Row():
|
133 |
status_output = gr.Textbox(label="Status", interactive=False)
|
134 |
task_id_output = gr.Textbox(label="Task ID", interactive=False)
|
135 |
|
136 |
-
with gr.Tab("π Check Status"):
|
137 |
-
gr.Markdown("###
|
138 |
-
|
139 |
-
label="Task ID",
|
140 |
-
|
141 |
-
)
|
142 |
-
check_button = gr.Button("π Check Status", variant="secondary")
|
143 |
|
144 |
-
status_display = gr.Textbox(label="Status", interactive=False)
|
145 |
-
video_output = gr.Video(label="Generated Video")
|
|
|
146 |
|
147 |
# Connect the functions to the interface
|
148 |
start_button.click(
|
@@ -154,29 +173,10 @@ with gr.Blocks(title="Theorem Explain Agent") as demo:
|
|
154 |
check_button.click(
|
155 |
fn=check_status,
|
156 |
inputs=[task_id_input],
|
157 |
-
outputs=[status_display, video_output]
|
|
|
|
|
158 |
)
|
159 |
|
160 |
-
gr.Markdown("""
|
161 |
-
### π How to Use:
|
162 |
-
1. **Start Generation**: Enter a Model, Topic, and Context, then click 'Generate Video'
|
163 |
-
2. **Copy the Task ID** that appears
|
164 |
-
3. **Check Status**: Go to the 'Check Status' tab, paste your Task ID, and click 'Check Status'
|
165 |
-
4. **Wait**: Video generation can take several minutes. Check periodically until complete
|
166 |
-
5. **Download**: When complete, the video will appear and can be downloaded
|
167 |
-
|
168 |
-
### π€ Supported Models:
|
169 |
-
- `gemini/gemini-1.5-flash` (recommended)
|
170 |
-
- `gemini/gemini-1.5-pro`
|
171 |
-
- `openai/gpt-4o`
|
172 |
-
- `openai/o3-mini`
|
173 |
-
- `anthropic/claude-3-opus-20240229`
|
174 |
-
""")
|
175 |
-
|
176 |
# Launch the app
|
177 |
-
|
178 |
-
demo.launch(
|
179 |
-
server_name="0.0.0.0",
|
180 |
-
server_port=7860,
|
181 |
-
show_error=True
|
182 |
-
)
|
|
|
1 |
+
# app.py (Final version with live logging and corrections)
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import uuid
|
5 |
import subprocess
|
6 |
import threading
|
7 |
import os
|
8 |
import time
|
|
|
|
|
|
|
9 |
import sys
|
10 |
+
import re
|
11 |
+
import traceback
|
12 |
|
13 |
+
# Add project root to Python path to fix any import issues
|
|
|
|
|
|
|
14 |
sys.path.insert(0, os.getcwd())
|
15 |
+
|
16 |
# --- Download Kokoro models if they don't exist ---
|
17 |
model_dir = "models"
|
18 |
+
kokoro_model_path = os.path.join(model_dir, "kokoro-v0_19.onnx")
|
19 |
+
kokoro_voices_path = os.path.join(model_dir, "voices.bin")
|
20 |
+
|
21 |
+
if not os.path.exists(kokoro_model_path) or not os.path.exists(kokoro_voices_path):
|
22 |
print("Downloading Kokoro TTS models...")
|
23 |
os.makedirs(model_dir, exist_ok=True)
|
24 |
+
# Using specific wget commands for clarity and robustness
|
25 |
+
os.system(f"wget -O {kokoro_model_path} https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx")
|
26 |
+
os.system(f"wget -O {kokoro_voices_path} https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/voices.bin")
|
27 |
print("Model download complete.")
|
28 |
|
29 |
+
# In-memory dictionary to track task status.
|
30 |
+
tasks = {}
|
31 |
+
|
32 |
def run_video_generation(task_id: str, topic: str, context: str, model: str):
|
33 |
"""
|
34 |
+
Runs the main generation script in a separate process and captures output in real-time.
|
35 |
"""
|
36 |
tasks[task_id]['status'] = 'running'
|
37 |
+
tasks[task_id]['log'] = 'Process started...\n'
|
38 |
|
39 |
+
# Sanitize topic name to create a valid directory/file prefix
|
40 |
+
file_prefix = re.sub(r'[^a-z0-9_]+', '_', topic.lower())
|
41 |
+
# The generate_video.py script will create this directory inside the general 'output' folder
|
42 |
output_dir = os.path.join("output", file_prefix)
|
43 |
|
44 |
+
# --- IMPORTANT: Command points to the specific output directory for this topic ---
|
45 |
command = [
|
46 |
+
"python", "-u", "generate_video.py", # '-u' for unbuffered output
|
47 |
"--model", model,
|
48 |
"--topic", topic,
|
49 |
"--context", context,
|
50 |
+
"--output_dir", output_dir
|
51 |
+
# Langfuse is disabled by not including the --use_langfuse flag
|
52 |
]
|
53 |
|
54 |
try:
|
55 |
+
# Use Popen to run the process in the background and stream output
|
56 |
+
process = subprocess.Popen(
|
57 |
+
command,
|
58 |
+
stdout=subprocess.PIPE,
|
59 |
+
stderr=subprocess.STDOUT,
|
60 |
+
text=True,
|
61 |
+
bufsize=1,
|
62 |
+
universal_newlines=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
# Read output line-by-line in real-time
|
66 |
+
for line in iter(process.stdout.readline, ''):
|
67 |
+
print(line, end='') # Print to Hugging Face console logs
|
68 |
+
tasks[task_id]['log'] += line
|
69 |
|
70 |
+
process.wait() # Wait for the process to complete
|
71 |
+
|
72 |
+
if process.returncode == 0:
|
73 |
+
# Check for the final combined video file
|
74 |
+
final_video_path = os.path.join(output_dir, f"{file_prefix}_combined.mp4")
|
75 |
+
|
76 |
+
if os.path.exists(final_video_path):
|
77 |
+
tasks[task_id]['status'] = 'completed'
|
78 |
+
tasks[task_id]['video_path'] = final_video_path
|
79 |
+
tasks[task_id]['log'] += f"\nβ
Success! Video available at: {final_video_path}"
|
80 |
+
else:
|
81 |
+
tasks[task_id]['status'] = 'failed'
|
82 |
+
tasks[task_id]['error'] = "Script finished, but the final combined video file was not found."
|
83 |
+
tasks[task_id]['log'] += f"\nβ Error: Output video not found at {final_video_path}"
|
84 |
else:
|
85 |
tasks[task_id]['status'] = 'failed'
|
86 |
+
tasks[task_id]['error'] = f"Process failed with return code {process.returncode}."
|
87 |
+
tasks[task_id]['log'] += f"\nβ Error: Process failed. Check logs for details."
|
88 |
+
|
|
|
|
|
89 |
except Exception as e:
|
90 |
+
print(f"Caught an exception: {e}")
|
91 |
tasks[task_id]['status'] = 'failed'
|
92 |
tasks[task_id]['error'] = str(e)
|
93 |
+
tasks[task_id]['log'] += f"\nβ An exception occurred: {traceback.format_exc()}"
|
94 |
|
95 |
def start_generation(topic: str, context: str, model: str):
|
96 |
if not all([topic, context, model]):
|
97 |
return "Topic, Context, and Model cannot be empty.", ""
|
98 |
|
99 |
task_id = str(uuid.uuid4())
|
100 |
+
tasks[task_id] = {'status': 'queued', 'model': model, 'log': ''}
|
101 |
|
|
|
102 |
thread = threading.Thread(
|
103 |
target=run_video_generation,
|
104 |
args=(task_id, topic, context, model)
|
105 |
)
|
106 |
thread.start()
|
107 |
|
108 |
+
return f"β
Task started with ID: {task_id}. Go to 'Check Status' tab to monitor progress.", task_id
|
109 |
|
110 |
def check_status(task_id: str):
|
111 |
if not task_id:
|
112 |
+
return "Please provide a Task ID.", None, "Please enter a Task ID above and click 'Check Status'."
|
113 |
|
114 |
task = tasks.get(task_id)
|
115 |
if not task:
|
116 |
+
return "Task not found.", None, f"No task found with ID: {task_id}"
|
117 |
|
118 |
status = task.get('status')
|
119 |
model = task.get('model', 'Unknown')
|
120 |
+
log = task.get('log', 'No logs yet...')
|
121 |
|
122 |
if status == 'completed':
|
123 |
video_path = task.get('video_path')
|
124 |
+
status_message = f"β
Status: {status} (Model: {model})"
|
125 |
+
return status_message, video_path, log
|
126 |
elif status == 'failed':
|
127 |
error = task.get('error', 'Unknown error')
|
128 |
+
status_message = f"β Status: {status} (Model: {model})"
|
129 |
+
return status_message, None, log
|
130 |
|
131 |
+
status_message = f"π Status: {status} (Model: {model})"
|
132 |
+
return status_message, None, log
|
133 |
|
134 |
# Create the Gradio interface
|
135 |
+
with gr.Blocks(css="footer {display: none !important}", title="Theorem Explain Agent") as demo:
|
136 |
+
gr.Markdown("# π Theorem Explain Agent: Video Generation")
|
137 |
+
gr.Markdown("Generate educational videos explaining mathematical theorems and concepts. This may take several minutes.")
|
138 |
|
139 |
with gr.Tab("π Start Generation"):
|
140 |
+
gr.Markdown("### 1. Enter the details for your video")
|
141 |
+
model_input = gr.Dropdown(
|
142 |
label="Model",
|
143 |
+
choices=["gemini/gemini-1.5-flash-001", "gemini/gemini-1.5-pro-002"],
|
144 |
+
value="gemini/gemini-1.5-flash-001",
|
145 |
+
info="Select the AI model for content generation."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
)
|
147 |
+
topic_input = gr.Textbox(label="Topic", placeholder="e.g., The Pythagorean Theorem")
|
148 |
+
context_input = gr.Textbox(label="Context", placeholder="A short explanation of the theorem.", lines=3)
|
149 |
start_button = gr.Button("π¬ Generate Video", variant="primary")
|
150 |
|
151 |
+
gr.Markdown("### 2. Monitor your task")
|
152 |
with gr.Row():
|
153 |
status_output = gr.Textbox(label="Status", interactive=False)
|
154 |
task_id_output = gr.Textbox(label="Task ID", interactive=False)
|
155 |
|
156 |
+
with gr.Tab("π Check Status & View Video"):
|
157 |
+
gr.Markdown("### Paste your Task ID to check progress and view the final video")
|
158 |
+
with gr.Row():
|
159 |
+
task_id_input = gr.Textbox(label="Task ID", placeholder="Enter the Task ID you received")
|
160 |
+
check_button = gr.Button("π Check Status", variant="secondary")
|
|
|
|
|
161 |
|
162 |
+
status_display = gr.Textbox(label="Current Status", interactive=False)
|
163 |
+
video_output = gr.Video(label="Generated Video", interactive=False)
|
164 |
+
log_display = gr.Textbox(label="Live Generation Logs", lines=15, interactive=False)
|
165 |
|
166 |
# Connect the functions to the interface
|
167 |
start_button.click(
|
|
|
173 |
check_button.click(
|
174 |
fn=check_status,
|
175 |
inputs=[task_id_input],
|
176 |
+
outputs=[status_display, video_output, log_display],
|
177 |
+
# Every 2 seconds, poll the status
|
178 |
+
every=2
|
179 |
)
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
# Launch the app
|
182 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|