Spaces:
Runtime error
Runtime error
File size: 16,667 Bytes
d9486d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import json
import os
from typing import List, Dict
import uuid
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import Language
from langchain_core.embeddings import Embeddings
import statistics
from litellm import embedding
import litellm
import tiktoken
from tqdm import tqdm
from langfuse import Langfuse
from mllm_tools.utils import _prepare_text_inputs
from task_generator import get_prompt_detect_plugins
class RAGVectorStore:
"""A class for managing vector stores for RAG (Retrieval Augmented Generation).
This class handles creation, loading and querying of vector stores for both Manim core
and plugin documentation.
Args:
chroma_db_path (str): Path to ChromaDB storage directory
manim_docs_path (str): Path to Manim documentation files
embedding_model (str): Name of the embedding model to use
trace_id (str, optional): Trace identifier for logging. Defaults to None
session_id (str, optional): Session identifier. Defaults to None
use_langfuse (bool, optional): Whether to use Langfuse logging. Defaults to True
helper_model: Helper model for processing. Defaults to None
"""
def __init__(self,
chroma_db_path: str = "chroma_db",
manim_docs_path: str = "rag/manim_docs",
embedding_model: str = "text-embedding-ada-002",
trace_id: str = None,
session_id: str = None,
use_langfuse: bool = True,
helper_model = None):
self.chroma_db_path = chroma_db_path
self.manim_docs_path = manim_docs_path
self.embedding_model = embedding_model
self.trace_id = trace_id
self.session_id = session_id
self.use_langfuse = use_langfuse
self.helper_model = helper_model
self.enc = tiktoken.encoding_for_model("gpt-4")
self.plugin_stores = {}
self.vector_store = self._load_or_create_vector_store()
def _load_or_create_vector_store(self):
"""Loads existing or creates new ChromaDB vector stores.
Creates/loads vector stores for both Manim core documentation and any available plugins.
Stores are persisted to disk for future reuse.
Returns:
Chroma: The core Manim vector store instance
"""
print("Entering _load_or_create_vector_store with trace_id:", self.trace_id)
core_path = os.path.join(self.chroma_db_path, "manim_core")
# Load or create core vector store
if os.path.exists(core_path):
print("Loading existing core ChromaDB...")
self.core_vector_store = Chroma(
collection_name="manim_core",
persist_directory=core_path,
embedding_function=self._get_embedding_function()
)
else:
print("Creating new core ChromaDB...")
self.core_vector_store = self._create_core_store()
# Fix: Use correct path construction for plugin_docs
plugin_docs_path = os.path.join(self.manim_docs_path, "plugin_docs")
print(f"Plugin docs path: {plugin_docs_path}")
if os.path.exists(plugin_docs_path):
for plugin_name in os.listdir(plugin_docs_path):
plugin_store_path = os.path.join(self.chroma_db_path, f"manim_plugin_{plugin_name}")
if os.path.exists(plugin_store_path):
print(f"Loading existing plugin store: {plugin_name}")
self.plugin_stores[plugin_name] = Chroma(
collection_name=f"manim_plugin_{plugin_name}",
persist_directory=plugin_store_path,
embedding_function=self._get_embedding_function()
)
else:
print(f"Creating new plugin store: {plugin_name}")
plugin_path = os.path.join(plugin_docs_path, plugin_name)
if os.path.isdir(plugin_path):
plugin_store = Chroma(
collection_name=f"manim_plugin_{plugin_name}",
embedding_function=self._get_embedding_function(),
persist_directory=plugin_store_path
)
plugin_docs = self._process_documentation_folder(plugin_path)
if plugin_docs:
self._add_documents_to_store(plugin_store, plugin_docs, plugin_name)
self.plugin_stores[plugin_name] = plugin_store
return self.core_vector_store # Return core store for backward compatibility
def _get_embedding_function(self) -> Embeddings:
"""Creates an embedding function using litellm.
Returns:
Embeddings: A LangChain Embeddings instance that wraps litellm functionality
"""
class LiteLLMEmbeddings(Embeddings):
def __init__(self, embedding_model):
self.embedding_model = embedding_model
def embed_documents(self, texts: list[str]) -> list[list[float]]:
litellm.success_callback = []
litellm.failure_callback = []
response = embedding(
model=self.embedding_model,
input=texts,
task_type="CODE_RETRIEVAL_QUERY" if self.embedding_model == "vertex_ai/text-embedding-005" else None
)
litellm.success_callback = ["langfuse"]
litellm.failure_callback = ["langfuse"]
return [r["embedding"] for r in response["data"]]
def embed_query(self, text: str) -> list[float]:
litellm.success_callback = []
litellm.failure_callback = []
response = embedding(
model=self.embedding_model,
input=[text],
task_type="CODE_RETRIEVAL_QUERY" if self.embedding_model == "vertex_ai/text-embedding-005" else None
)
litellm.success_callback = ["langfuse"]
litellm.failure_callback = ["langfuse"]
return response["data"][0]["embedding"]
return LiteLLMEmbeddings(self.embedding_model)
def _create_core_store(self):
"""Creates the main ChromaDB vector store for Manim core documentation.
Returns:
Chroma: The initialized and populated core vector store
"""
core_vector_store = Chroma(
collection_name="manim_core",
embedding_function=self._get_embedding_function(),
persist_directory=os.path.join(self.chroma_db_path, "manim_core")
)
# Process manim core docs
core_docs = self._process_documentation_folder(os.path.join(self.manim_docs_path, "manim_core"))
if core_docs:
self._add_documents_to_store(core_vector_store, core_docs, "manim_core")
return core_vector_store
def _process_documentation_folder(self, folder_path: str) -> List[Document]:
"""Processes documentation files from a folder into LangChain documents.
Args:
folder_path (str): Path to the folder containing documentation files
Returns:
List[Document]: List of processed LangChain documents
"""
all_docs = []
for root, _, files in os.walk(folder_path):
for file in files:
if file.endswith(('.md', '.py')):
file_path = os.path.join(root, file)
try:
loader = TextLoader(file_path)
documents = loader.load()
for doc in documents:
doc.metadata['source'] = file_path
all_docs.extend(documents)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
if not all_docs:
print(f"No markdown or python files found in {folder_path}")
return []
# Split documents using appropriate splitters
split_docs = []
markdown_splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.MARKDOWN
)
python_splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.PYTHON
)
for doc in all_docs:
if doc.metadata['source'].endswith('.md'):
temp_docs = markdown_splitter.split_documents([doc])
for temp_doc in temp_docs:
temp_doc.page_content = f"Source: {doc.metadata['source']}\n\n{temp_doc.page_content}"
split_docs.extend(temp_docs)
elif doc.metadata['source'].endswith('.py'):
temp_docs = python_splitter.split_documents([doc])
for temp_doc in temp_docs:
temp_doc.page_content = f"Source: {doc.metadata['source']}\n\n{temp_doc.page_content}"
split_docs.extend(temp_docs)
return split_docs
def _add_documents_to_store(self, vector_store: Chroma, documents: List[Document], store_name: str):
"""Adds documents to a vector store in batches with rate limiting.
Args:
vector_store (Chroma): The vector store to add documents to
documents (List[Document]): List of documents to add
store_name (str): Name of the store for logging purposes
"""
print(f"Adding documents to {store_name} store")
# Calculate token statistics
token_lengths = [len(self.enc.encode(doc.page_content)) for doc in documents]
print(f"Token length statistics for {store_name}: "
f"Min: {min(token_lengths)}, Max: {max(token_lengths)}, "
f"Mean: {sum(token_lengths) / len(token_lengths):.1f}, "
f"Median: {statistics.median(token_lengths)}, "
f"Std: {statistics.stdev(token_lengths):.1f}")
import time
batch_size = 10
request_count = 0
for i in tqdm(range(0, len(documents), batch_size), desc=f"Processing {store_name} batches"):
batch_docs = documents[i:i + batch_size]
batch_ids = [str(uuid.uuid4()) for _ in batch_docs]
vector_store.add_documents(documents=batch_docs, ids=batch_ids)
request_count += 1
if request_count % 100 == 0:
time.sleep(60) # Sleep for 1 second every 100 requests
vector_store.persist()
def find_relevant_docs(self, queries: List[Dict], k: int = 5, trace_id: str = None, topic: str = None, scene_number: int = None) -> List[str]:
"""Finds relevant documentation based on the provided queries.
Args:
queries (List[Dict]): List of query dictionaries with 'type' and 'query' keys
k (int, optional): Number of results to return per query. Defaults to 5
trace_id (str, optional): Trace identifier for logging. Defaults to None
topic (str, optional): Topic name for logging. Defaults to None
scene_number (int, optional): Scene number for logging. Defaults to None
Returns:
List[str]: Formatted string containing relevant documentation snippets
"""
manim_core_formatted_results = []
manim_plugin_formatted_results = []
# Create a Langfuse span if enabled
if self.use_langfuse:
langfuse = Langfuse()
span = langfuse.span(
trace_id=trace_id, # Use the passed trace_id
name=f"RAG search for {topic} - scene {scene_number}",
metadata={
"topic": topic,
"scene_number": scene_number,
"session_id": self.session_id
}
)
# Separate queries by type
manim_core_queries = [query for query in queries if query["type"] == "manim-core"]
manim_plugin_queries = [query for query in queries if query["type"] != "manim-core" and query["type"] in self.plugin_stores]
if len([q for q in queries if q["type"] != "manim-core"]) != len(manim_plugin_queries):
print("Warning: Some plugin queries were skipped because their types weren't found in available plugin stores")
# Search in core manim docs
for query in manim_core_queries:
query_text = query["query"]
self.core_vector_store._embedding_function.parent_observation_id = span.id
manim_core_results = self.core_vector_store.similarity_search_with_relevance_scores(
query=query_text,
k=k,
score_threshold=0.5
)
for result in manim_core_results:
manim_core_formatted_results.append({
"query": query_text,
"source": result[0].metadata['source'],
"content": result[0].page_content,
"score": result[1]
})
# Search in relevant plugin docs
for query in manim_plugin_queries:
plugin_name = query["type"]
query_text = query["query"]
self.plugin_stores[plugin_name]._embedding_function.parent_observation_id = span.id
if plugin_name in self.plugin_stores:
plugin_results = self.plugin_stores[plugin_name].similarity_search_with_relevance_scores(
query=query_text,
k=k,
score_threshold=0.5
)
for result in plugin_results:
manim_plugin_formatted_results.append({
"query": query_text,
"source": result[0].metadata['source'],
"content": result[0].page_content,
"score": result[1]
})
print(f"Number of results before removing duplicates: {len(manim_core_formatted_results) + len(manim_plugin_formatted_results)}")
# Remove duplicates based on content
manim_core_unique_results = []
manim_plugin_unique_results = []
seen = set()
for item in manim_core_formatted_results:
key = item['content']
if key not in seen:
manim_core_unique_results.append(item)
seen.add(key)
for item in manim_plugin_formatted_results:
key = item['content']
if key not in seen:
manim_plugin_unique_results.append(item)
seen.add(key)
print(f"Number of results after removing duplicates: {len(manim_core_unique_results) + len(manim_plugin_unique_results)}")
total_tokens = sum(len(self.enc.encode(res['content'])) for res in manim_core_unique_results + manim_plugin_unique_results)
print(f"Total tokens for the RAG search: {total_tokens}")
# Update Langfuse with the deduplicated results
if self.use_langfuse:
filtered_results_markdown = json.dumps(manim_core_unique_results + manim_plugin_unique_results, indent=2)
span.update( # Use span.update, not span.end
output=filtered_results_markdown,
metadata={
"total_tokens": total_tokens,
"initial_results_count": len(manim_core_formatted_results) + len(manim_plugin_formatted_results),
"filtered_results_count": len(manim_core_unique_results) + len(manim_plugin_unique_results)
}
)
manim_core_results = "Please refer to the following Manim core documentation that may be helpful for the code generation:\n\n" + "\n\n".join([f"Content:\n````text\n{res['content']}\n````\nScore: {res['score']}" for res in manim_core_unique_results])
manim_plugin_results = "Please refer to the following Manim plugin documentation that may be helpful for the code generation:\n\n" + "\n\n".join([f"Content:\n````text\n{res['content']}\n````\nScore: {res['score']}" for res in manim_plugin_unique_results])
return manim_core_results + "\n\n" + manim_plugin_results |