File size: 20,427 Bytes
d9486d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import os
import re
import json
from typing import Union, List, Dict
from PIL import Image
import glob

from src.utils.utils import extract_json
from mllm_tools.utils import _prepare_text_inputs, _extract_code, _prepare_text_image_inputs
from mllm_tools.gemini import GeminiWrapper
from mllm_tools.vertex_ai import VertexAIWrapper
from task_generator import (
    get_prompt_code_generation,
    get_prompt_fix_error,
    get_prompt_visual_fix_error,
    get_banned_reasonings,
    get_prompt_rag_query_generation_fix_error,
    get_prompt_context_learning_code,
    get_prompt_rag_query_generation_code
)
from task_generator.prompts_raw import (
    _code_font_size,
    _code_disable,
    _code_limit,
    _prompt_manim_cheatsheet
)
from src.rag.vector_store import RAGVectorStore # Import RAGVectorStore

class CodeGenerator:
    """A class for generating and managing Manim code."""

    def __init__(self, scene_model, helper_model, output_dir="output", print_response=False, use_rag=False, use_context_learning=False, context_learning_path="data/context_learning", chroma_db_path="rag/chroma_db", manim_docs_path="rag/manim_docs", embedding_model="azure/text-embedding-3-large", use_visual_fix_code=False, use_langfuse=True, session_id=None):
        """Initialize the CodeGenerator.

        Args:
            scene_model: The model used for scene generation
            helper_model: The model used for helper tasks
            output_dir (str, optional): Directory for output files. Defaults to "output".
            print_response (bool, optional): Whether to print model responses. Defaults to False.
            use_rag (bool, optional): Whether to use RAG. Defaults to False.
            use_context_learning (bool, optional): Whether to use context learning. Defaults to False.
            context_learning_path (str, optional): Path to context learning examples. Defaults to "data/context_learning".
            chroma_db_path (str, optional): Path to ChromaDB. Defaults to "rag/chroma_db".
            manim_docs_path (str, optional): Path to Manim docs. Defaults to "rag/manim_docs".
            embedding_model (str, optional): Name of embedding model. Defaults to "azure/text-embedding-3-large".
            use_visual_fix_code (bool, optional): Whether to use visual code fixing. Defaults to False.
            use_langfuse (bool, optional): Whether to use Langfuse logging. Defaults to True.
            session_id (str, optional): Session identifier. Defaults to None.
        """
        self.scene_model = scene_model
        self.helper_model = helper_model
        self.output_dir = output_dir
        self.print_response = print_response
        self.use_rag = use_rag
        self.use_context_learning = use_context_learning
        self.context_learning_path = context_learning_path
        self.context_examples = self._load_context_examples() if use_context_learning else None
        self.manim_docs_path = manim_docs_path

        self.use_visual_fix_code = use_visual_fix_code
        self.banned_reasonings = get_banned_reasonings()
        self.session_id = session_id # Use session_id passed from VideoGenerator

        if use_rag:
            self.vector_store = RAGVectorStore(
                chroma_db_path=chroma_db_path,
                manim_docs_path=manim_docs_path,
                embedding_model=embedding_model,
                session_id=self.session_id,
                use_langfuse=use_langfuse
            )
        else:
            self.vector_store = None

    def _load_context_examples(self) -> str:
        """Load all context learning examples from the specified directory.

        Returns:
            str: Formatted context learning examples, or None if no examples found.
        """
        examples = []
        for example_file in glob.glob(f"{self.context_learning_path}/**/*.py", recursive=True):
            with open(example_file, 'r') as f:
                examples.append(f"# Example from {os.path.basename(example_file)}\n{f.read()}\n")

        # Format examples using get_prompt_context_learning_code instead of _prompt_context_learning
        if examples:
            formatted_examples = get_prompt_context_learning_code(
                examples="\n".join(examples)
            )
            return formatted_examples
        return None

    def _generate_rag_queries_code(self, implementation: str, scene_trace_id: str = None, topic: str = None, scene_number: int = None, session_id: str = None, relevant_plugins: List[str] = []) -> List[str]:
        """Generate RAG queries from the implementation plan.

        Args:
            implementation (str): The implementation plan text
            scene_trace_id (str, optional): Trace ID for the scene. Defaults to None.
            topic (str, optional): Topic of the scene. Defaults to None.
            scene_number (int, optional): Scene number. Defaults to None.
            session_id (str, optional): Session identifier. Defaults to None.
            relevant_plugins (List[str], optional): List of relevant plugins. Defaults to empty list.

        Returns:
            List[str]: List of generated RAG queries
        """
        # Create a cache key for this scene
        cache_key = f"{topic}_scene{scene_number}"

        # Check if we already have a cache file for this scene
        cache_dir = os.path.join(self.output_dir, re.sub(r'[^a-z0-9_]+', '_', topic.lower()), f"scene{scene_number}", "rag_cache")
        os.makedirs(cache_dir, exist_ok=True)
        cache_file = os.path.join(cache_dir, "rag_queries_code.json")

        # If cache file exists, load and return cached queries
        if os.path.exists(cache_file):
            with open(cache_file, 'r') as f:
                cached_queries = json.load(f)
                print(f"Using cached RAG queries for {cache_key}")
                return cached_queries

        # Generate new queries if not cached
        if relevant_plugins:
            prompt = get_prompt_rag_query_generation_code(implementation, ", ".join(relevant_plugins))
        else:
            prompt = get_prompt_rag_query_generation_code(implementation, "No plugins are relevant.")

        queries = self.helper_model(
            _prepare_text_inputs(prompt),
            metadata={"generation_name": "rag_query_generation", "trace_id": scene_trace_id, "tags": [topic, f"scene{scene_number}"], "session_id": session_id}
        )

        print(f"RAG queries: {queries}")
        # retreive json triple backticks
        
        try: # add try-except block to handle potential json decode errors
            queries = re.search(r'```json(.*)```', queries, re.DOTALL).group(1)
            queries = json.loads(queries)
        except json.JSONDecodeError as e:
            print(f"JSONDecodeError when parsing RAG queries for storyboard: {e}")
            print(f"Response text was: {queries}")
            return [] # Return empty list in case of parsing error

        # Cache the queries
        with open(cache_file, 'w') as f:
            json.dump(queries, f)

        return queries

    def _generate_rag_queries_error_fix(self, error: str, code: str, scene_trace_id: str = None, topic: str = None, scene_number: int = None, session_id: str = None, relevant_plugins: List[str] = []) -> List[str]:
        """Generate RAG queries for fixing code errors.

        Args:
            error (str): The error message to fix
            code (str): The code containing the error
            scene_trace_id (str, optional): Trace ID for the scene. Defaults to None.
            topic (str, optional): Topic of the scene. Defaults to None.
            scene_number (int, optional): Scene number. Defaults to None.
            session_id (str, optional): Session identifier. Defaults to None.
            relevant_plugins (List[str], optional): List of relevant plugins. Defaults to empty list.

        Returns:
            List[str]: List of generated RAG queries for error fixing
        """
        # Create a cache key for this scene and error
        cache_key = f"{topic}_scene{scene_number}_error_fix"

        # Check if we already have a cache file for error fix queries
        cache_dir = os.path.join(self.output_dir, re.sub(r'[^a-z0-9_]+', '_', topic.lower()), f"scene{scene_number}", "rag_cache")
        os.makedirs(cache_dir, exist_ok=True)
        cache_file = os.path.join(cache_dir, "rag_queries_error_fix.json")

        # If cache file exists, load and return cached queries
        if os.path.exists(cache_file):
            with open(cache_file, 'r') as f:
                cached_queries = json.load(f)
                print(f"Using cached RAG queries for error fix in {cache_key}")
                return cached_queries

        # Generate new queries for error fix if not cached
        prompt = get_prompt_rag_query_generation_fix_error(
            error=error,
            code=code,
            relevant_plugins=", ".join(relevant_plugins) if relevant_plugins else "No plugins are relevant."
        )

        queries = self.helper_model(
            _prepare_text_inputs(prompt),
            metadata={"generation_name": "rag-query-generation-fix-error", "trace_id": scene_trace_id, "tags": [topic, f"scene{scene_number}"], "session_id": session_id}
        )

        # remove json triple backticks
        queries = queries.replace("```json", "").replace("```", "")
        try: # add try-except block to handle potential json decode errors
            queries = json.loads(queries)
        except json.JSONDecodeError as e:
            print(f"JSONDecodeError when parsing RAG queries for error fix: {e}")
            print(f"Response text was: {queries}")
            return [] # Return empty list in case of parsing error

        # Cache the queries
        with open(cache_file, 'w') as f:
            json.dump(queries, f)

        return queries

    def _extract_code_with_retries(self, response_text: str, pattern: str, generation_name: str = None, trace_id: str = None, session_id: str = None, max_retries: int = 10) -> str:
        """Extract code from response text with retry logic.

        Args:
            response_text (str): The text containing code to extract
            pattern (str): Regex pattern for extracting code
            generation_name (str, optional): Name of generation step. Defaults to None.
            trace_id (str, optional): Trace identifier. Defaults to None.
            session_id (str, optional): Session identifier. Defaults to None.
            max_retries (int, optional): Maximum number of retries. Defaults to 10.

        Returns:
            str: The extracted code

        Raises:
            ValueError: If code extraction fails after max retries
        """
        retry_prompt = """
        Please extract the Python code in the correct format using the pattern: {pattern}. 
        You MUST NOT include any other text or comments. 
        You MUST return the exact same code as in the previous response, NO CONTENT EDITING is allowed.
        Previous response: 
        {response_text}
        """

        for attempt in range(max_retries):
            code_match = re.search(pattern, response_text, re.DOTALL)
            if code_match:
                return code_match.group(1)
            
            if attempt < max_retries - 1:
                print(f"Attempt {attempt + 1}: Failed to extract code pattern. Retrying...")
                # Regenerate response with a more explicit prompt
                response_text = self.scene_model(
                    _prepare_text_inputs(retry_prompt.format(pattern=pattern, response_text=response_text)),
                    metadata={
                        "generation_name": f"{generation_name}_format_retry_{attempt + 1}",
                        "trace_id": trace_id,
                        "session_id": session_id
                    }
                )
        
        raise ValueError(f"Failed to extract code pattern after {max_retries} attempts. Pattern: {pattern}")

    def generate_manim_code(self,
                            topic: str,
                            description: str,                            
                            scene_outline: str,
                            scene_implementation: str,
                            scene_number: int,
                            additional_context: Union[str, List[str]] = None,
                            scene_trace_id: str = None,
                            session_id: str = None,
                            rag_queries_cache: Dict = None) -> str:
        """Generate Manim code from video plan.

        Args:
            topic (str): Topic of the scene
            description (str): Description of the scene
            scene_outline (str): Outline of the scene
            scene_implementation (str): Implementation details
            scene_number (int): Scene number
            additional_context (Union[str, List[str]], optional): Additional context. Defaults to None.
            scene_trace_id (str, optional): Trace identifier. Defaults to None.
            session_id (str, optional): Session identifier. Defaults to None.
            rag_queries_cache (Dict, optional): Cache for RAG queries. Defaults to None.

        Returns:
            Tuple[str, str]: Generated code and response text
        """
        if self.use_context_learning:
            # Add context examples to additional_context
            if additional_context is None:
                additional_context = []
            elif isinstance(additional_context, str):
                additional_context = [additional_context]
            
            # Now using the properly formatted code examples
            if self.context_examples:
                additional_context.append(self.context_examples)

        if self.use_rag:
            # Generate RAG queries (will use cache if available)
            rag_queries = self._generate_rag_queries_code(
                implementation=scene_implementation,
                scene_trace_id=scene_trace_id,
                topic=topic,
                scene_number=scene_number,
                session_id=session_id
            )

            retrieved_docs = self.vector_store.find_relevant_docs(
                queries=rag_queries,
                k=2, # number of documents to retrieve
                trace_id=scene_trace_id,
                topic=topic,
                scene_number=scene_number
            )
            # Format the retrieved documents into a string
            if additional_context is None:
                additional_context = []
            additional_context.append(retrieved_docs)

        # Format code generation prompt with plan and retrieved context
        prompt = get_prompt_code_generation(
            scene_outline=scene_outline,
            scene_implementation=scene_implementation,
            topic=topic,
            description=description,
            scene_number=scene_number,
            additional_context=additional_context
        )

        # Generate code using model
        response_text = self.scene_model(
            _prepare_text_inputs(prompt),
            metadata={"generation_name": "code_generation", "trace_id": scene_trace_id, "tags": [topic, f"scene{scene_number}"], "session_id": session_id}
        )

        # Extract code with retries
        code = self._extract_code_with_retries(
            response_text,
            r"```python(.*)```",
            generation_name="code_generation",
            trace_id=scene_trace_id,
            session_id=session_id
        )
        return code, response_text

    def fix_code_errors(self, implementation_plan: str, code: str, error: str, scene_trace_id: str, topic: str, scene_number: int, session_id: str, rag_queries_cache: Dict = None) -> str:
        """Fix errors in generated Manim code.

        Args:
            implementation_plan (str): Original implementation plan
            code (str): Code containing errors
            error (str): Error message to fix
            scene_trace_id (str): Trace identifier
            topic (str): Topic of the scene
            scene_number (int): Scene number
            session_id (str): Session identifier
            rag_queries_cache (Dict, optional): Cache for RAG queries. Defaults to None.

        Returns:
            Tuple[str, str]: Fixed code and response text
        """
        # Format error fix prompt
        prompt = get_prompt_fix_error(implementation_plan=implementation_plan, manim_code=code, error=error)

        if self.use_rag:
            # Generate RAG queries for error fixing
            rag_queries = self._generate_rag_queries_error_fix(
                error=error,
                code=code,
                scene_trace_id=scene_trace_id,
                topic=topic,
                scene_number=scene_number,
                session_id=session_id
            )
            retrieved_docs = self.vector_store.find_relevant_docs(
                queries=rag_queries,
                k=2, # number of documents to retrieve for error fixing
                trace_id=scene_trace_id,
                topic=topic,
                scene_number=scene_number
            )
            # Format the retrieved documents into a string
            prompt = get_prompt_fix_error(implementation_plan=implementation_plan, manim_code=code, error=error, additional_context=retrieved_docs)

        # Get fixed code from model
        response_text = self.scene_model(
            _prepare_text_inputs(prompt),
            metadata={"generation_name": "code_fix_error", "trace_id": scene_trace_id, "tags": [topic, f"scene{scene_number}"], "session_id": session_id}
        )

        # Extract fixed code with retries
        fixed_code = self._extract_code_with_retries(
            response_text,
            r"```python(.*)```",
            generation_name="code_fix_error",
            trace_id=scene_trace_id,
            session_id=session_id
        )
        return fixed_code, response_text

    def visual_self_reflection(self, code: str, media_path: Union[str, Image.Image], scene_trace_id: str, topic: str, scene_number: int, session_id: str) -> str:
        """Use snapshot image or mp4 video to fix code.

        Args:
            code (str): Code to fix
            media_path (Union[str, Image.Image]): Path to media file or PIL Image
            scene_trace_id (str): Trace identifier
            topic (str): Topic of the scene
            scene_number (int): Scene number
            session_id (str): Session identifier

        Returns:
            Tuple[str, str]: Fixed code and response text
        """
        
        # Determine if we're dealing with video or image
        is_video = isinstance(media_path, str) and media_path.endswith('.mp4')
        
        # Load prompt template
        with open('task_generator/prompts_raw/prompt_visual_self_reflection.txt', 'r') as f:
            prompt_template = f.read()
        
        # Format prompt
        prompt = prompt_template.format(code=code)
        
        # Prepare input based on media type
        if is_video and isinstance(self.scene_model, (GeminiWrapper, VertexAIWrapper)):
            # For video with Gemini models
            messages = [
                {"type": "text", "content": prompt},
                {"type": "video", "content": media_path}
            ]
        else:
            # For images or non-Gemini models
            if isinstance(media_path, str):
                media = Image.open(media_path)
            else:
                media = media_path
            messages = [
                {"type": "text", "content": prompt},
                {"type": "image", "content": media}
            ]
        
        # Get model response
        response_text = self.scene_model(
            messages,
            metadata={
                "generation_name": "visual_self_reflection",
                "trace_id": scene_trace_id,
                "tags": [topic, f"scene{scene_number}"],
                "session_id": session_id
            }
        )
        
        # Extract code with retries
        fixed_code = self._extract_code_with_retries(
            response_text,
            r"```python(.*)```",
            generation_name="visual_self_reflection",
            trace_id=scene_trace_id,
            session_id=session_id
        )
        return fixed_code, response_text