Spaces:
Runtime error
Runtime error
File size: 45,494 Bytes
d9486d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
import os
import json
import random
from typing import Union, List, Dict, Optional
import subprocess
import argparse
import glob
from PIL import Image
import re
from dotenv import load_dotenv
import asyncio
import uuid # Import uuid for generating trace_id
from mllm_tools.litellm import LiteLLMWrapper
from mllm_tools.utils import _prepare_text_inputs # Keep _prepare_text_inputs if still used directly in main
# Import new modules
from src.core.video_planner import VideoPlanner
from src.core.code_generator import CodeGenerator
from src.core.video_renderer import VideoRenderer
from src.utils.utils import _print_response, _extract_code, extract_xml # Import utility functions
from src.config.config import Config # Import Config class
# Video parsing
from src.core.parse_video import (
get_images_from_video,
image_with_most_non_black_space
)
from task_generator import get_banned_reasonings
from task_generator.prompts_raw import (_code_font_size, _code_disable, _code_limit, _prompt_manim_cheatsheet)
# Load allowed models list from JSON file
allowed_models_path = os.path.join(os.path.dirname(__file__), 'src', 'utils', 'allowed_models.json')
with open(allowed_models_path, 'r') as f:
allowed_models = json.load(f).get("allowed_models", [])
load_dotenv(override=True)
class VideoGenerator:
"""
A class for generating manim videos using AI models.
This class coordinates the video generation pipeline by managing scene planning,
code generation, and video rendering. It supports concurrent scene processing,
visual code fixing, and RAG (Retrieval Augmented Generation).
Args:
planner_model: Model used for scene planning and high-level decisions
scene_model: Model used specifically for scene generation (defaults to planner_model)
helper_model: Helper model for additional tasks (defaults to planner_model)
output_dir (str): Directory to store generated files and videos
verbose (bool): Whether to print detailed output
use_rag (bool): Whether to use Retrieval Augmented Generation
use_context_learning (bool): Whether to use context learning with example code
context_learning_path (str): Path to context learning examples
chroma_db_path (str): Path to ChromaDB for RAG
manim_docs_path (str): Path to Manim documentation for RAG
embedding_model (str): Model to use for embeddings
use_visual_fix_code (bool): Whether to use visual feedback for code fixing
use_langfuse (bool): Whether to enable Langfuse logging
trace_id (str, optional): Trace ID for logging
max_scene_concurrency (int): Maximum number of scenes to process concurrently
Attributes:
output_dir (str): Directory for output files
verbose (bool): Verbosity flag
use_visual_fix_code (bool): Visual code fixing flag
session_id (str): Unique session identifier
scene_semaphore (asyncio.Semaphore): Controls concurrent scene processing
banned_reasonings (list): List of banned reasoning patterns
planner (VideoPlanner): Handles scene planning
code_generator (CodeGenerator): Handles code generation
video_renderer (VideoRenderer): Handles video rendering
"""
def __init__(self,
planner_model,
scene_model=None,
helper_model=None,
output_dir="output",
verbose=False,
use_rag=False,
use_context_learning=False,
context_learning_path="data/context_learning",
chroma_db_path="data/rag/chroma_db",
manim_docs_path="data/rag/manim_docs",
embedding_model="azure/text-embedding-3-large",
use_visual_fix_code=False,
use_langfuse=True,
trace_id=None,
max_scene_concurrency: int = 5):
self.output_dir = output_dir
self.verbose = verbose
self.use_visual_fix_code = use_visual_fix_code
self.session_id = self._load_or_create_session_id() # Modified to load existing or create new
self.scene_semaphore = asyncio.Semaphore(max_scene_concurrency)
self.banned_reasonings = get_banned_reasonings()
# Initialize separate modules
self.planner = VideoPlanner(
planner_model=planner_model,
helper_model=helper_model,
output_dir=output_dir,
print_response=verbose,
use_context_learning=use_context_learning,
context_learning_path=context_learning_path,
use_rag=use_rag,
session_id=self.session_id,
chroma_db_path=chroma_db_path,
manim_docs_path=manim_docs_path,
embedding_model=embedding_model,
use_langfuse=use_langfuse
)
self.code_generator = CodeGenerator(
scene_model=scene_model if scene_model is not None else planner_model,
helper_model=helper_model if helper_model is not None else planner_model,
output_dir=output_dir,
print_response=verbose,
use_rag=use_rag,
use_context_learning=use_context_learning,
context_learning_path=context_learning_path,
chroma_db_path=chroma_db_path,
manim_docs_path=manim_docs_path,
embedding_model=embedding_model,
use_visual_fix_code=use_visual_fix_code,
use_langfuse=use_langfuse,
session_id=self.session_id
)
self.video_renderer = VideoRenderer(
output_dir=output_dir,
print_response=verbose,
use_visual_fix_code=use_visual_fix_code
)
def _load_or_create_session_id(self) -> str:
"""
Load existing session ID from file or create a new one.
Returns:
str: The session ID either loaded from file or newly created.
"""
session_file = os.path.join(self.output_dir, "session_id.txt")
if os.path.exists(session_file):
with open(session_file, 'r') as f:
session_id = f.read().strip()
print(f"Loaded existing session ID: {session_id}")
return session_id
# Create new session ID if none exists
session_id = str(uuid.uuid4())
os.makedirs(self.output_dir, exist_ok=True)
with open(session_file, 'w') as f:
f.write(session_id)
print(f"Created new session ID: {session_id}")
return session_id
def _save_topic_session_id(self, topic: str, session_id: str) -> None:
"""
Save session ID for a specific topic.
Args:
topic (str): The topic to save the session ID for
session_id (str): The session ID to save
"""
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
topic_dir = os.path.join(self.output_dir, file_prefix)
os.makedirs(topic_dir, exist_ok=True)
session_file = os.path.join(topic_dir, "session_id.txt")
with open(session_file, 'w') as f:
f.write(session_id)
def _load_topic_session_id(self, topic: str) -> Optional[str]:
"""
Load session ID for a specific topic if it exists.
Args:
topic (str): The topic to load the session ID for
Returns:
Optional[str]: The session ID if found, None otherwise
"""
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
session_file = os.path.join(self.output_dir, file_prefix, "session_id.txt")
if os.path.exists(session_file):
with open(session_file, 'r') as f:
return f.read().strip()
return None
def generate_scene_outline(self,
topic: str,
description: str,
session_id: str) -> str:
"""
Generate scene outline using VideoPlanner.
Args:
topic (str): The topic of the video
description (str): Description of the video content
session_id (str): Session identifier for tracking
Returns:
str: Generated scene outline
"""
return self.planner.generate_scene_outline(topic, description, session_id)
async def generate_scene_implementation(self,
topic: str,
description: str,
plan: str,
session_id: str) -> List[str]:
"""
Generate scene implementations using VideoPlanner.
Args:
topic (str): The topic of the video
description (str): Description of the video content
plan (str): The scene plan to implement
session_id (str): Session identifier for tracking
Returns:
List[str]: List of generated scene implementations
"""
return await self.planner.generate_scene_implementation(topic, description, plan, session_id)
async def generate_scene_implementation_concurrently(self,
topic: str,
description: str,
plan: str,
session_id: str) -> List[str]:
"""
Generate scene implementations concurrently using VideoPlanner.
Args:
topic (str): The topic of the video
description (str): Description of the video content
plan (str): The scene plan to implement
session_id (str): Session identifier for tracking
Returns:
List[str]: List of generated scene implementations
"""
return await self.planner.generate_scene_implementation_concurrently(topic, description, plan, session_id, self.scene_semaphore) # Pass semaphore
def load_implementation_plans(self, topic: str) -> Dict[int, Optional[str]]:
"""
Load implementation plans for each scene.
Args:
topic (str): The topic to load implementation plans for
Returns:
Dict[int, Optional[str]]: Dictionary mapping scene numbers to their plans.
If a scene's plan is missing, its value will be None.
"""
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
# Load scene outline from file
scene_outline_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
if not os.path.exists(scene_outline_path):
return {}
with open(scene_outline_path, "r") as f:
scene_outline = f.read()
# Extract scene outline to get number of scenes
scene_outline_content = extract_xml(scene_outline)
scene_number = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline_content))
print(f"Number of scenes: {scene_number}")
implementation_plans = {}
# Check each scene's implementation plan
for i in range(1, scene_number + 1):
plan_path = os.path.join(self.output_dir, file_prefix, f"scene{i}", f"{file_prefix}_scene{i}_implementation_plan.txt")
if os.path.exists(plan_path):
with open(plan_path, "r") as f:
implementation_plans[i] = f.read()
print(f"Found existing implementation plan for scene {i}")
else:
implementation_plans[i] = None
print(f"Missing implementation plan for scene {i}")
return implementation_plans
async def render_video_fix_code(self,
topic: str,
description: str,
scene_outline: str,
implementation_plans: List,
max_retries=3,
session_id: str = None) -> None:
"""
Render the video for all scenes with code fixing capability.
Args:
topic (str): The topic of the video
description (str): Description of the video content
scene_outline (str): The overall scene outline
implementation_plans (List): List of implementation plans for each scene
max_retries (int, optional): Maximum number of code fix attempts. Defaults to 3.
session_id (str, optional): Session identifier for tracking
"""
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
# Create tasks for each scene
tasks = []
for i, implementation_plan in enumerate(implementation_plans):
# Try to load scene trace id, or generate new one if it doesn't exist
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{i+1}")
subplan_dir = os.path.join(scene_dir, "subplans")
os.makedirs(subplan_dir, exist_ok=True) # Create directories if they don't exist
scene_trace_id_path = os.path.join(subplan_dir, "scene_trace_id.txt")
try:
with open(scene_trace_id_path, 'r') as f:
scene_trace_id = f.read().strip()
except FileNotFoundError:
scene_trace_id = str(uuid.uuid4())
with open(scene_trace_id_path, 'w') as f:
f.write(scene_trace_id)
task = self.process_scene(i, scene_outline, implementation_plan, topic, description, max_retries, file_prefix, session_id, scene_trace_id)
tasks.append(task)
# Execute all tasks concurrently
await asyncio.gather(*tasks)
async def process_scene(self, i: int, scene_outline: str, scene_implementation: str, topic: str, description: str, max_retries: int, file_prefix: str, session_id: str, scene_trace_id: str): # added scene_trace_id
"""
Process a single scene using CodeGenerator and VideoRenderer.
Args:
i (int): Scene index
scene_outline (str): Overall scene outline
scene_implementation (str): Implementation plan for this scene
topic (str): The topic of the video
description (str): Description of the video content
max_retries (int): Maximum number of code fix attempts
file_prefix (str): Prefix for file naming
session_id (str): Session identifier for tracking
scene_trace_id (str): Trace identifier for this scene
"""
curr_scene = i + 1
curr_version = 0
# scene_trace_id = str(uuid.uuid4()) # Remove uuid generation
rag_queries_cache = {} # Initialize RAG queries cache
# Create necessary directories
code_dir = os.path.join(self.output_dir, file_prefix, f"scene{curr_scene}", "code")
os.makedirs(code_dir, exist_ok=True)
media_dir = os.path.join(self.output_dir, file_prefix, "media") # Define media_dir here
async with self.scene_semaphore:
# Step 3A: Generate initial manim code
code, log = self.code_generator.generate_manim_code(
topic=topic,
description=description,
scene_outline=scene_outline,
scene_implementation=scene_implementation,
scene_number=curr_scene,
additional_context=[_prompt_manim_cheatsheet, _code_font_size, _code_limit, _code_disable],
scene_trace_id=scene_trace_id, # Use passed scene_trace_id
session_id=session_id,
rag_queries_cache=rag_queries_cache # Pass the cache
)
# Save initial code and log (file operations can be offloaded if needed)
with open(os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}_init_log.txt"), "w") as f:
f.write(log)
with open(os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}.py"), "w") as f:
f.write(code)
print(f"Code saved to {code_dir}/{file_prefix}_scene{curr_scene}_v{curr_version}.py")
# Step 3B: Compile and fix code if needed
error_message = None
while True: # Retry loop controlled by break statements
code, error_message = await self.video_renderer.render_scene(
code=code,
file_prefix=file_prefix,
curr_scene=curr_scene,
curr_version=curr_version,
code_dir=code_dir,
media_dir=media_dir,
max_retries=max_retries, # Pass max_retries here if needed in render_scene
use_visual_fix_code=self.use_visual_fix_code,
visual_self_reflection_func=self.code_generator.visual_self_reflection, # Pass visual_self_reflection function
banned_reasonings=self.banned_reasonings, # Pass banned reasonings
scene_trace_id=scene_trace_id,
topic=topic,
session_id=session_id
)
if error_message is None: # Render success if error_message is None
break
if curr_version >= max_retries: # Max retries reached
print(f"Max retries reached for scene {curr_scene}, error: {error_message}")
break # Exit retry loop
curr_version += 1
# if program runs this, it means that the code is not rendered successfully
code, log = self.code_generator.fix_code_errors(
implementation_plan=scene_implementation,
code=code,
error=error_message,
scene_trace_id=scene_trace_id,
topic=topic,
scene_number=curr_scene,
session_id=session_id,
rag_queries_cache=rag_queries_cache
)
with open(os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}_fix_log.txt"), "w") as f:
f.write(log)
with open(os.path.join(code_dir, f"{file_prefix}_scene{curr_scene}_v{curr_version}.py"), "w") as f:
f.write(code)
print(f"Code saved to {code_dir}/{file_prefix}_scene{curr_scene}_v{curr_version}.py")
def run_manim_process(self,
topic: str):
"""
Run manim on all generated manim code for a specific topic using VideoRenderer.
Args:
topic (str): The topic to render videos for
"""
return self.video_renderer.run_manim_process(topic)
def create_snapshot_scene(self, topic: str, scene_number: int, version_number: int, return_type: str = "image"):
"""
Create a snapshot of the video for a specific topic and scene using VideoRenderer.
Args:
topic (str): The topic of the video
scene_number (int): Scene number to snapshot
version_number (int): Version number to snapshot
return_type (str, optional): Type of snapshot to return. Defaults to "image".
Returns:
The snapshot in the specified format
"""
return self.video_renderer.create_snapshot_scene(topic, scene_number, version_number, return_type)
def combine_videos(self, topic: str):
"""
Combine all videos and subtitle files for a specific topic using VideoRenderer.
Args:
topic (str): The topic to combine videos for
"""
self.video_renderer.combine_videos(topic)
async def _generate_scene_implementation_single(self, topic: str, description: str, scene_outline_i: str, i: int, file_prefix: str, session_id: str, scene_trace_id: str) -> str:
"""
Generate detailed implementation plan for a single scene using VideoPlanner.
Args:
topic (str): The topic of the video
description (str): Description of the video content
scene_outline_i (str): Outline for this specific scene
i (int): Scene index
file_prefix (str): Prefix for file naming
session_id (str): Session identifier for tracking
scene_trace_id (str): Trace identifier for this scene
Returns:
str: Generated implementation plan
"""
return await self.planner._generate_scene_implementation_single(topic, description, scene_outline_i, i, file_prefix, session_id, scene_trace_id)
async def generate_video_pipeline(self, topic: str, description: str, max_retries: int, only_plan: bool = False, specific_scenes: List[int] = None):
"""
Modified pipeline to handle partial scene completions and option to only generate plans for specific scenes.
Args:
topic (str): The topic of the video
description (str): Description of the video content
max_retries (int): Maximum number of code fix attempts
only_plan (bool, optional): Whether to only generate plans without rendering. Defaults to False.
specific_scenes (List[int], optional): List of specific scenes to process. Defaults to None.
"""
session_id = self._load_or_create_session_id()
self._save_topic_session_id(topic, session_id)
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
# Load or generate scene outline
scene_outline_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
if os.path.exists(scene_outline_path):
with open(scene_outline_path, "r") as f:
scene_outline = f.read()
print(f"Loaded existing scene outline for topic: {topic}")
if self.planner.use_rag:
self.planner.relevant_plugins = self.planner.rag_integration.detect_relevant_plugins(topic, description) or []
self.planner.rag_integration.set_relevant_plugins(self.planner.relevant_plugins)
print(f"Detected relevant plugins: {self.planner.relevant_plugins}")
else:
print(f"Generating new scene outline for topic: {topic}")
scene_outline = self.planner.generate_scene_outline(topic, description, session_id)
os.makedirs(os.path.join(self.output_dir, file_prefix), exist_ok=True)
with open(scene_outline_path, "w") as f:
f.write(scene_outline)
# Load or generate implementation plans
implementation_plans_dict = self.load_implementation_plans(topic)
if not implementation_plans_dict:
scene_outline_content = extract_xml(scene_outline)
scene_numbers = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline_content))
implementation_plans_dict = {i: None for i in range(1, scene_numbers + 1)}
# Generate missing implementation plans for specified scenes or all missing scenes
missing_scenes = []
for scene_num, plan in implementation_plans_dict.items():
if plan is None and (specific_scenes is None or scene_num in specific_scenes):
missing_scenes.append(scene_num)
if missing_scenes:
print(f"Generating implementation plans for missing scenes: {missing_scenes}")
for scene_num in missing_scenes:
scene_outline_content = extract_xml(scene_outline)
scene_match = re.search(f'<SCENE_{scene_num}>(.*?)</SCENE_{scene_num}>', scene_outline_content, re.DOTALL)
if scene_match:
scene_outline_i = scene_match.group(1)
scene_trace_id = str(uuid.uuid4())
implementation_plan = await self._generate_scene_implementation_single(
topic, description, scene_outline_i, scene_num, file_prefix, session_id, scene_trace_id)
implementation_plans_dict[scene_num] = implementation_plan
if only_plan:
print(f"Only generating plans - skipping code generation and video rendering for topic: {topic}")
return
# Convert dictionary to list maintaining scene order
sorted_scene_numbers = sorted(implementation_plans_dict.keys())
implementation_plans = [implementation_plans_dict[i] for i in sorted_scene_numbers]
# Render scenes
print(f"Starting video rendering for topic: {topic}")
# Check which scenes need processing
scenes_to_process = []
for i, implementation_plan in enumerate(implementation_plans):
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{i+1}")
code_dir = os.path.join(scene_dir, "code")
# Check if scene has any code files
has_code = False
if os.path.exists(code_dir):
if any(f.endswith('.py') for f in os.listdir(code_dir)):
has_code = True
# For only_render mode, only process scenes without code
if args.only_render:
if not has_code:
scenes_to_process.append((i+1, implementation_plan))
print(f"Scene {i+1} has no code, will process")
else:
print(f"Scene {i+1} already has code, skipping")
# For normal mode, process scenes that haven't been successfully rendered
elif not os.path.exists(os.path.join(scene_dir, "succ_rendered.txt")):
scenes_to_process.append((i+1, implementation_plan))
if not scenes_to_process:
print(f"No scenes need processing for topic '{topic}'.")
else:
print(f"Rendering {len(scenes_to_process)} scenes that need processing...")
# Create a list of tuples with scene numbers and plans
scene_plans = [(scene_num, plan) for scene_num, plan in scenes_to_process]
# Sort by scene number to ensure correct order
scene_plans.sort(key=lambda x: x[0])
# Extract just the plans in the correct order
filtered_implementation_plans = [plan for _, plan in scene_plans]
await self.render_video_fix_code(topic, description, scene_outline, filtered_implementation_plans,
max_retries=max_retries, session_id=session_id)
if not args.only_render: # Skip video combination in only_render mode
print(f"Video rendering completed for topic '{topic}'.")
def check_theorem_status(self, theorem: Dict) -> Dict[str, bool]:
"""
Check if a theorem has its plan, code files, and rendered videos with detailed scene status.
Args:
theorem (Dict): Dictionary containing theorem information
Returns:
Dict[str, bool]: Dictionary containing status information for the theorem
"""
topic = theorem['theorem']
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
# Check scene outline
scene_outline_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_scene_outline.txt")
has_scene_outline = os.path.exists(scene_outline_path)
# Get number of scenes if outline exists
num_scenes = 0
if has_scene_outline:
with open(scene_outline_path, "r") as f:
scene_outline = f.read()
scene_outline_content = extract_xml(scene_outline)
num_scenes = len(re.findall(r'<SCENE_(\d+)>[^<]', scene_outline_content))
# Check implementation plans, code files, and rendered videos
implementation_plans = 0
code_files = 0
rendered_scenes = 0
# Track status of individual scenes
scene_status = []
for i in range(1, num_scenes + 1):
scene_dir = os.path.join(self.output_dir, file_prefix, f"scene{i}")
# Check implementation plan
plan_path = os.path.join(scene_dir, f"{file_prefix}_scene{i}_implementation_plan.txt")
has_plan = os.path.exists(plan_path)
if has_plan:
implementation_plans += 1
# Check code files
code_dir = os.path.join(scene_dir, "code")
has_code = False
if os.path.exists(code_dir):
if any(f.endswith('.py') for f in os.listdir(code_dir)):
has_code = True
code_files += 1
# Check rendered scene video
has_render = False
if os.path.exists(scene_dir):
succ_rendered_path = os.path.join(scene_dir, "succ_rendered.txt")
if os.path.exists(succ_rendered_path):
has_render = True
rendered_scenes += 1
scene_status.append({
'scene_number': i,
'has_plan': has_plan,
'has_code': has_code,
'has_render': has_render
})
# Check combined video
combined_video_path = os.path.join(self.output_dir, file_prefix, f"{file_prefix}_combined.mp4")
has_combined_video = os.path.exists(combined_video_path)
return {
'topic': topic,
'has_scene_outline': has_scene_outline,
'total_scenes': num_scenes,
'implementation_plans': implementation_plans,
'code_files': code_files,
'rendered_scenes': rendered_scenes,
'has_combined_video': has_combined_video,
'scene_status': scene_status
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate Manim videos using AI')
parser.add_argument('--model', type=str, choices=allowed_models,
default='gemini/gemini-1.5-pro-002', help='Select the AI model to use')
parser.add_argument('--topic', type=str, default=None, help='Topic to generate videos for')
parser.add_argument('--context', type=str, default=None, help='Context of the topic')
parser.add_argument('--helper_model', type=str, choices=allowed_models,
default=None, help='Select the helper model to use')
parser.add_argument('--only_gen_vid', action='store_true', help='Only generate videos to existing plans')
parser.add_argument('--only_combine', action='store_true', help='Only combine videos')
parser.add_argument('--peek_existing_videos', '--peek', action='store_true', help='Peek at existing videos')
parser.add_argument('--output_dir', type=str, default=Config.OUTPUT_DIR, help='Output directory') # Use Config
parser.add_argument('--theorems_path', type=str, default=None, help='Path to theorems json file')
parser.add_argument('--sample_size', '--sample', type=int, default=None, help='Number of theorems to sample')
parser.add_argument('--verbose', action='store_true', help='Print verbose output')
parser.add_argument('--max_retries', type=int, default=5, help='Maximum number of retries for code generation')
parser.add_argument('--use_rag', '--rag', action='store_true', help='Use Retrieval Augmented Generation')
parser.add_argument('--use_visual_fix_code','--visual_fix_code', action='store_true', help='Use VLM to fix code with rendered visuals')
parser.add_argument('--chroma_db_path', type=str, default=Config.CHROMA_DB_PATH, help="Path to Chroma DB") # Use Config
parser.add_argument('--manim_docs_path', type=str, default=Config.MANIM_DOCS_PATH, help="Path to manim docs") # Use Config
parser.add_argument('--embedding_model', type=str,
default=Config.EMBEDDING_MODEL, # Use Config
choices=["azure/text-embedding-3-large", "vertex_ai/text-embedding-005"],
help='Select the embedding model to use')
parser.add_argument('--use_context_learning', action='store_true',
help='Use context learning with example Manim code')
parser.add_argument('--context_learning_path', type=str,
default=Config.CONTEXT_LEARNING_PATH, # Use Config
help='Path to context learning examples')
parser.add_argument('--use_langfuse', action='store_true',
help='Enable Langfuse logging')
parser.add_argument('--max_scene_concurrency', type=int, default=1, help='Maximum number of scenes to process concurrently')
parser.add_argument('--max_topic_concurrency', type=int, default=1,
help='Maximum number of topics to process concurrently')
parser.add_argument('--debug_combine_topic', type=str, help='Debug combine videos', default=None)
parser.add_argument('--only_plan', action='store_true', help='Only generate scene outline and implementation plans')
parser.add_argument('--check_status', action='store_true',
help='Check planning and code status for all theorems')
parser.add_argument('--only_render', action='store_true', help='Only render scenes without combining videos')
parser.add_argument('--scenes', nargs='+', type=int, help='Specific scenes to process (if theorems_path is provided)')
args = parser.parse_args()
# Initialize planner model using LiteLLM
if args.verbose:
verbose = True
else:
verbose = False
planner_model = LiteLLMWrapper(
model_name=args.model,
temperature=0.7,
print_cost=True,
verbose=verbose,
use_langfuse=args.use_langfuse
)
helper_model = LiteLLMWrapper(
model_name=args.helper_model if args.helper_model else args.model, # Use helper_model if provided, else planner_model
temperature=0.7,
print_cost=True,
verbose=verbose,
use_langfuse=args.use_langfuse
)
scene_model = LiteLLMWrapper( # Initialize scene_model separately
model_name=args.model,
temperature=0.7,
print_cost=True,
verbose=verbose,
use_langfuse=args.use_langfuse
)
print(f"Planner model: {args.model}, Helper model: {args.helper_model if args.helper_model else args.model}, Scene model: {args.model}") # Print all models
if args.theorems_path:
# Load the sample theorems
with open(args.theorems_path, "r") as f:
theorems = json.load(f)
if args.sample_size:
theorems = theorems[:args.sample_size]
if args.peek_existing_videos:
print(f"Here's the results of checking whether videos are rendered successfully in {args.output_dir}:")
# in output_dir, find all combined.mp4 files and print number of successful rendered videos out of total number of folders
successful_rendered_videos = 0
total_folders = 0
for item in os.listdir(args.output_dir):
if os.path.isdir(os.path.join(args.output_dir, item)):
total_folders += 1
if os.path.exists(os.path.join(args.output_dir, item, f"{item}_combined.mp4")):
successful_rendered_videos += 1
print(f"Number of successful rendered videos: {successful_rendered_videos}/{total_folders}")
# also check whether any succ_rendered.txt in scene{i} folder, and then add up the number of successful rendered videos
successful_rendered_videos = 0
total_scenes = 0
for item in os.listdir(args.output_dir):
if os.path.isdir(os.path.join(args.output_dir, item)):
for scene_folder in os.listdir(os.path.join(args.output_dir, item)):
if "scene" in scene_folder and os.path.isdir(os.path.join(args.output_dir, item, scene_folder)):
total_scenes += 1
if os.path.exists(os.path.join(args.output_dir, item, scene_folder, "succ_rendered.txt")):
successful_rendered_videos += 1
print(f"Number of successful rendered scenes: {successful_rendered_videos}/{total_scenes}")
exit()
video_generator = VideoGenerator(
planner_model=planner_model,
scene_model=scene_model, # Pass scene_model
helper_model=helper_model, # Pass helper_model
output_dir=args.output_dir,
verbose=args.verbose,
use_rag=args.use_rag,
use_context_learning=args.use_context_learning,
context_learning_path=args.context_learning_path,
chroma_db_path=args.chroma_db_path,
manim_docs_path=args.manim_docs_path,
embedding_model=args.embedding_model,
use_visual_fix_code=args.use_visual_fix_code,
use_langfuse=args.use_langfuse,
max_scene_concurrency=args.max_scene_concurrency
)
if args.debug_combine_topic is not None:
video_generator.combine_videos(args.debug_combine_topic)
exit()
if args.only_gen_vid:
# Generate videos for existing plans
print("Generating videos for existing plans...")
async def process_theorem(theorem, topic_semaphore):
async with topic_semaphore:
topic = theorem['theorem']
print(f"Processing topic: {topic}")
await video_generator.render_video_fix_code(topic, theorem['description'], max_retries=args.max_retries)
async def main():
# Use the command-line argument for topic concurrency
topic_semaphore = asyncio.Semaphore(args.max_topic_concurrency)
tasks = [process_theorem(theorem, topic_semaphore) for theorem in theorems]
await asyncio.gather(*tasks)
asyncio.run(main())
elif args.check_status:
print("\nChecking theorem status...")
video_generator = VideoGenerator(
planner_model=planner_model,
scene_model=scene_model,
helper_model=helper_model,
output_dir=args.output_dir,
verbose=args.verbose,
use_rag=args.use_rag,
use_context_learning=args.use_context_learning,
context_learning_path=args.context_learning_path,
chroma_db_path=args.chroma_db_path,
manim_docs_path=args.manim_docs_path,
embedding_model=args.embedding_model,
use_visual_fix_code=args.use_visual_fix_code,
use_langfuse=args.use_langfuse,
max_scene_concurrency=args.max_scene_concurrency
)
all_statuses = [video_generator.check_theorem_status(theorem) for theorem in theorems]
# Print combined status table
print("\nTheorem Status:")
print("-" * 160)
print(f"{'Topic':<40} {'Outline':<8} {'Total':<8} {'Status (Plan/Code/Render)':<50} {'Combined':<10} {'Missing Components':<40}")
print("-" * 160)
for status in all_statuses:
# Create status string showing plan/code/render completion for each scene
scene_status_str = ""
for scene in status['scene_status']:
scene_str = (
("P" if scene['has_plan'] else "-") +
("C" if scene['has_code'] else "-") +
("R" if scene['has_render'] else "-") + " "
)
scene_status_str += scene_str
# Collect missing components
missing_plans = []
missing_code = []
missing_renders = []
for scene in status['scene_status']:
if not scene['has_plan']:
missing_plans.append(str(scene['scene_number']))
if not scene['has_code']:
missing_code.append(str(scene['scene_number']))
if not scene['has_render']:
missing_renders.append(str(scene['scene_number']))
# Format missing components string
missing_str = []
if missing_plans:
missing_str.append(f"P:{','.join(missing_plans)}")
if missing_code:
missing_str.append(f"C:{','.join(missing_code)}")
if missing_renders:
missing_str.append(f"R:{','.join(missing_renders)}")
missing_str = ' '.join(missing_str)
print(f"{status['topic'][:37]+'...' if len(status['topic'])>37 else status['topic']:<40} "
f"{'β' if status['has_scene_outline'] else 'β':<8} "
f"{status['total_scenes']:<8} "
f"{scene_status_str[:47]+'...' if len(scene_status_str)>47 else scene_status_str:<50} "
f"{'β' if status['has_combined_video'] else 'β':<10} "
f"{missing_str[:37]+'...' if len(missing_str)>37 else missing_str:<40}")
# Print summary
print("\nSummary:")
print(f"Total theorems: {len(theorems)}")
print(f"Total scenes: {sum(status['total_scenes'] for status in all_statuses)}")
print(f"Scene completion status:")
print(f" Plans: {sum(status['implementation_plans'] for status in all_statuses)} scenes")
print(f" Code: {sum(status['code_files'] for status in all_statuses)} scenes")
print(f" Renders: {sum(status['rendered_scenes'] for status in all_statuses)} scenes")
print(f"Combined videos: {sum(1 for status in all_statuses if status['has_combined_video'])}/{len(theorems)}")
exit()
else:
# Generate video pipeline from scratch
print("Generating video pipeline from scratch...")
async def process_theorem(theorem, topic_semaphore):
async with topic_semaphore:
topic = theorem['theorem']
description = theorem['description']
print(f"Processing topic: {topic}")
if args.only_combine:
video_generator.combine_videos(topic)
else:
await video_generator.generate_video_pipeline(
topic,
description,
max_retries=args.max_retries,
only_plan=args.only_plan,
specific_scenes=args.scenes
)
if not args.only_plan and not args.only_render: # Add condition for only_render
video_generator.combine_videos(topic)
async def main():
# Use the command-line argument for topic concurrency
topic_semaphore = asyncio.Semaphore(args.max_topic_concurrency)
tasks = [process_theorem(theorem, topic_semaphore) for theorem in theorems]
await asyncio.gather(*tasks)
asyncio.run(main())
elif args.topic and args.context:
video_generator = VideoGenerator(
planner_model=planner_model,
scene_model=scene_model, # Pass scene_model
helper_model=helper_model, # Pass helper_model
output_dir=args.output_dir,
verbose=args.verbose,
use_rag=args.use_rag,
use_context_learning=args.use_context_learning,
context_learning_path=args.context_learning_path,
chroma_db_path=args.chroma_db_path,
manim_docs_path=args.manim_docs_path,
embedding_model=args.embedding_model,
use_visual_fix_code=args.use_visual_fix_code,
use_langfuse=args.use_langfuse,
max_scene_concurrency=args.max_scene_concurrency
)
# Process single topic with context
print(f"Processing topic: {args.topic}")
if args.only_gen_vid:
video_generator.render_video_fix_code(args.topic, args.context, max_retries=args.max_retries)
exit()
if args.only_combine:
video_generator.combine_videos(args.topic)
else:
asyncio.run(video_generator.generate_video_pipeline(
args.topic,
args.context,
max_retries=args.max_retries,
only_plan=args.only_plan,
))
if not args.only_plan and not args.only_render:
video_generator.combine_videos(args.topic)
else:
print("Please provide either (--theorems_path) or (--topic and --context)")
exit()
|