|
import os |
|
import random |
|
import sys |
|
from typing import Sequence, Mapping, Any, Union |
|
import torch |
|
|
|
|
|
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: |
|
"""Returns the value at the given index of a sequence or mapping. |
|
|
|
If the object is a sequence (like list or string), returns the value at the given index. |
|
If the object is a mapping (like a dictionary), returns the value at the index-th key. |
|
|
|
Some return a dictionary, in these cases, we look for the "results" key |
|
|
|
Args: |
|
obj (Union[Sequence, Mapping]): The object to retrieve the value from. |
|
index (int): The index of the value to retrieve. |
|
|
|
Returns: |
|
Any: The value at the given index. |
|
|
|
Raises: |
|
IndexError: If the index is out of bounds for the object and the object is not a mapping. |
|
""" |
|
try: |
|
return obj[index] |
|
except KeyError: |
|
return obj["result"][index] |
|
|
|
|
|
def find_path(name: str, path: str = None) -> str: |
|
""" |
|
Recursively looks at parent folders starting from the given path until it finds the given name. |
|
Returns the path as a Path object if found, or None otherwise. |
|
""" |
|
|
|
if path is None: |
|
path = os.getcwd() |
|
|
|
|
|
if name in os.listdir(path): |
|
path_name = os.path.join(path, name) |
|
print(f"{name} found: {path_name}") |
|
return path_name |
|
|
|
|
|
parent_directory = os.path.dirname(path) |
|
|
|
|
|
if parent_directory == path: |
|
return None |
|
|
|
|
|
return find_path(name, parent_directory) |
|
|
|
|
|
def add_comfyui_directory_to_sys_path() -> None: |
|
""" |
|
Add 'ComfyUI' to the sys.path |
|
""" |
|
comfyui_path = find_path("ComfyUI") |
|
if comfyui_path is not None and os.path.isdir(comfyui_path): |
|
sys.path.append(comfyui_path) |
|
print(f"'{comfyui_path}' added to sys.path") |
|
|
|
|
|
def add_extra_model_paths() -> None: |
|
""" |
|
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. |
|
""" |
|
try: |
|
from main import load_extra_path_config |
|
except ImportError: |
|
print( |
|
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." |
|
) |
|
from utils.extra_config import load_extra_path_config |
|
|
|
extra_model_paths = find_path("extra_model_paths.yaml") |
|
|
|
if extra_model_paths is not None: |
|
load_extra_path_config(extra_model_paths) |
|
else: |
|
print("Could not find the extra_model_paths config file.") |
|
|
|
|
|
add_comfyui_directory_to_sys_path() |
|
add_extra_model_paths() |
|
|
|
|
|
def import_custom_nodes() -> None: |
|
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS |
|
|
|
This function sets up a new asyncio event loop, initializes the PromptServer, |
|
creates a PromptQueue, and initializes the custom nodes. |
|
""" |
|
import asyncio |
|
import execution |
|
from nodes import init_extra_nodes |
|
import server |
|
|
|
|
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
|
|
|
|
server_instance = server.PromptServer(loop) |
|
execution.PromptQueue(server_instance) |
|
|
|
|
|
init_extra_nodes() |
|
|
|
|
|
from nodes import NODE_CLASS_MAPPINGS |
|
|
|
|
|
def main(): |
|
import_custom_nodes() |
|
with torch.inference_mode(): |
|
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]() |
|
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint( |
|
ckpt_name="DreamShaper_8_pruned.safetensors" |
|
) |
|
|
|
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() |
|
emptylatentimage_5 = emptylatentimage.generate( |
|
width=512, height=512, batch_size=1 |
|
) |
|
|
|
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() |
|
cliptextencode_6 = cliptextencode.encode( |
|
text="Indian Cricket Team is playing against Australia,", |
|
clip=get_value_at_index(checkpointloadersimple_4, 1), |
|
) |
|
|
|
cliptextencode_7 = cliptextencode.encode( |
|
text="text, watermark", clip=get_value_at_index(checkpointloadersimple_4, 1) |
|
) |
|
|
|
ksampler = NODE_CLASS_MAPPINGS["KSampler"]() |
|
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() |
|
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() |
|
|
|
for q in range(1): |
|
ksampler_3 = ksampler.sample( |
|
seed=random.randint(1, 2**64), |
|
steps=20, |
|
cfg=8, |
|
sampler_name="euler", |
|
scheduler="normal", |
|
denoise=1, |
|
model=get_value_at_index(checkpointloadersimple_4, 0), |
|
positive=get_value_at_index(cliptextencode_6, 0), |
|
negative=get_value_at_index(cliptextencode_7, 0), |
|
latent_image=get_value_at_index(emptylatentimage_5, 0), |
|
) |
|
|
|
vaedecode_8 = vaedecode.decode( |
|
samples=get_value_at_index(ksampler_3, 0), |
|
vae=get_value_at_index(checkpointloadersimple_4, 2), |
|
) |
|
|
|
saveimage_9 = saveimage.save_images( |
|
filename_prefix="ComfyUI", images=get_value_at_index(vaedecode_8, 0) |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|