|
import torch |
|
import torch.nn.functional as F |
|
|
|
class Mahiro: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"model": ("MODEL",), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
RETURN_NAMES = ("patched_model",) |
|
FUNCTION = "patch" |
|
CATEGORY = "_for_testing" |
|
DESCRIPTION = "Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt." |
|
def patch(self, model): |
|
m = model.clone() |
|
def mahiro_normd(args): |
|
scale: float = args['cond_scale'] |
|
cond_p: torch.Tensor = args['cond_denoised'] |
|
uncond_p: torch.Tensor = args['uncond_denoised'] |
|
|
|
leap = cond_p * scale |
|
|
|
u_leap = uncond_p * scale |
|
cfg = args["denoised"] |
|
merge = (leap + cfg) / 2 |
|
normu = torch.sqrt(u_leap.abs()) * u_leap.sign() |
|
normm = torch.sqrt(merge.abs()) * merge.sign() |
|
sim = F.cosine_similarity(normu, normm).mean() |
|
simsc = 2 * (sim+1) |
|
wm = (simsc*cfg + (4-simsc)*leap) / 4 |
|
return wm |
|
m.set_model_sampler_post_cfg_function(mahiro_normd) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"Mahiro": Mahiro |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"Mahiro": "Mahiro is so cute that she deserves a better guidance function!! (γγ»Ογ»γ)", |
|
} |
|
|