Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from transformers import pipeline
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Load models
|
9 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
10 |
+
qa_pipeline = pipeline('question-answering', model='distilbert-base-uncased-distilled-squad')
|
11 |
+
|
12 |
+
st.set_page_config(page_title="QuickLit - AI Research Assistant")
|
13 |
+
st.title("π QuickLit: Literature Q&A Assistant")
|
14 |
+
|
15 |
+
# File upload
|
16 |
+
uploaded_file = st.file_uploader("Upload a research paper (PDF)", type=["pdf"])
|
17 |
+
|
18 |
+
if uploaded_file:
|
19 |
+
reader = PdfReader(uploaded_file)
|
20 |
+
full_text = ""
|
21 |
+
for page in reader.pages:
|
22 |
+
full_text += page.extract_text()
|
23 |
+
|
24 |
+
# Split text into chunks
|
25 |
+
sentences = full_text.split('. ')
|
26 |
+
chunks = ['. '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
|
27 |
+
|
28 |
+
# Generate embeddings
|
29 |
+
st.info("π Generating embeddings...")
|
30 |
+
embeddings = embedder.encode(chunks)
|
31 |
+
|
32 |
+
# Create FAISS index
|
33 |
+
index = faiss.IndexFlatL2(embeddings[0].shape[0])
|
34 |
+
index.add(np.array(embeddings))
|
35 |
+
|
36 |
+
# Input question
|
37 |
+
question = st.text_input("Ask a question about the paper:")
|
38 |
+
|
39 |
+
if question:
|
40 |
+
# Embed the question
|
41 |
+
q_embedding = embedder.encode([question])
|
42 |
+
|
43 |
+
# Retrieve top 3 similar chunks
|
44 |
+
D, I = index.search(np.array(q_embedding), k=3)
|
45 |
+
retrieved_contexts = [chunks[i] for i in I[0]]
|
46 |
+
context = " ".join(retrieved_contexts)
|
47 |
+
|
48 |
+
# Answer using transformer
|
49 |
+
st.info("π‘ Answering with AI...")
|
50 |
+
answer = qa_pipeline(question=question, context=context)
|
51 |
+
st.success(f"**Answer:** {answer['answer']}")
|