Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,98 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import os
|
5 |
|
6 |
+
# Configure the endpoint
|
7 |
+
ENDPOINT_URL = os.environ.get("ENDPOINT_URL", "http://your-endpoint-url.com/predict")
|
|
|
|
|
8 |
|
9 |
+
# Define the function to call your endpoint
|
10 |
+
def check_safety(input_text):
|
11 |
+
if not input_text.strip():
|
12 |
+
return "Please enter some text to check"
|
13 |
+
|
14 |
+
# Prepare the payload for your endpoint
|
15 |
+
payload = {
|
16 |
+
"inputs": input_text
|
17 |
+
}
|
18 |
+
|
19 |
+
# Set headers for JSON content
|
20 |
+
headers = {
|
21 |
+
"Content-Type": "application/json"
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
# Make the request to your endpoint
|
26 |
+
response = requests.post(ENDPOINT_URL, json=payload, headers=headers, timeout=30)
|
27 |
+
|
28 |
+
# Check if the request was successful
|
29 |
+
if response.status_code == 200:
|
30 |
+
result = response.json()
|
31 |
+
|
32 |
+
# Format the result based on your endpoint's response format
|
33 |
+
is_safe = result.get("is_safe", False)
|
34 |
+
safety_result = result.get("safety_result", "No result received")
|
35 |
+
|
36 |
+
if is_safe:
|
37 |
+
return f"✅ {safety_result}"
|
38 |
+
else:
|
39 |
+
return f"❌ {safety_result}"
|
40 |
+
else:
|
41 |
+
return f"Error: Request failed with status code {response.status_code}. Details: {response.text}"
|
42 |
+
except requests.exceptions.Timeout:
|
43 |
+
return "Error: Request timed out. The endpoint may be overloaded or unavailable."
|
44 |
+
except requests.exceptions.ConnectionError:
|
45 |
+
return "Error: Failed to connect to the endpoint. Please check the endpoint URL."
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error: {str(e)}"
|
48 |
|
49 |
+
# Define the Gradio interface
|
50 |
+
with gr.Blocks(title="Safety Content Classifier", css="footer {display: none !important}") as demo:
|
51 |
+
gr.Markdown(f"# Safety Content Classifier")
|
52 |
+
gr.Markdown(f"## Connected to external safety model endpoint")
|
53 |
+
|
54 |
+
with gr.Accordion("About this demo", open=False):
|
55 |
+
gr.Markdown("""
|
56 |
+
This demo uses an external API endpoint to classify text based on safety policies.
|
57 |
+
It checks content against the following categories:
|
58 |
+
- Harassment
|
59 |
+
- Dangerous Content
|
60 |
+
- Hate Speech
|
61 |
+
- Sexually Explicit Information
|
62 |
+
|
63 |
+
The model will respond with 'Safe' or 'Unsafe' followed by any violated categories.
|
64 |
+
""")
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
input_text = gr.Textbox(
|
69 |
+
label="Enter text to check",
|
70 |
+
placeholder="Type here...",
|
71 |
+
lines=5
|
72 |
+
)
|
73 |
+
check_button = gr.Button("Check Safety", variant="primary")
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
output = gr.Textbox(
|
77 |
+
label="Safety Result",
|
78 |
+
lines=5
|
79 |
+
)
|
80 |
+
|
81 |
+
# Set up event handlers
|
82 |
+
check_button.click(fn=check_safety, inputs=input_text, outputs=output)
|
83 |
+
input_text.submit(fn=check_safety, inputs=input_text, outputs=output)
|
84 |
+
|
85 |
+
# Example inputs
|
86 |
+
gr.Examples(
|
87 |
+
[
|
88 |
+
["Hello, how are you today?"],
|
89 |
+
["I love your work, it's amazing!"],
|
90 |
+
["I want to learn how to make a bomb."],
|
91 |
+
["I hate people from that country."],
|
92 |
+
["Let's meet for coffee and discuss the project."],
|
93 |
+
],
|
94 |
+
input_text
|
95 |
+
)
|
96 |
|
97 |
+
# Launch the app
|
98 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|