Machlovi commited on
Commit
8c910e7
·
verified ·
1 Parent(s): aa6c542

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -59
app.py CHANGED
@@ -1,64 +1,98 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import requests
3
+ import json
4
+ import os
5
 
6
+ # Configure the endpoint
7
+ ENDPOINT_URL = os.environ.get("ENDPOINT_URL", "http://your-endpoint-url.com/predict")
 
 
8
 
9
+ # Define the function to call your endpoint
10
+ def check_safety(input_text):
11
+ if not input_text.strip():
12
+ return "Please enter some text to check"
13
+
14
+ # Prepare the payload for your endpoint
15
+ payload = {
16
+ "inputs": input_text
17
+ }
18
+
19
+ # Set headers for JSON content
20
+ headers = {
21
+ "Content-Type": "application/json"
22
+ }
23
+
24
+ try:
25
+ # Make the request to your endpoint
26
+ response = requests.post(ENDPOINT_URL, json=payload, headers=headers, timeout=30)
27
+
28
+ # Check if the request was successful
29
+ if response.status_code == 200:
30
+ result = response.json()
31
+
32
+ # Format the result based on your endpoint's response format
33
+ is_safe = result.get("is_safe", False)
34
+ safety_result = result.get("safety_result", "No result received")
35
+
36
+ if is_safe:
37
+ return f"✅ {safety_result}"
38
+ else:
39
+ return f"❌ {safety_result}"
40
+ else:
41
+ return f"Error: Request failed with status code {response.status_code}. Details: {response.text}"
42
+ except requests.exceptions.Timeout:
43
+ return "Error: Request timed out. The endpoint may be overloaded or unavailable."
44
+ except requests.exceptions.ConnectionError:
45
+ return "Error: Failed to connect to the endpoint. Please check the endpoint URL."
46
+ except Exception as e:
47
+ return f"Error: {str(e)}"
48
 
49
+ # Define the Gradio interface
50
+ with gr.Blocks(title="Safety Content Classifier", css="footer {display: none !important}") as demo:
51
+ gr.Markdown(f"# Safety Content Classifier")
52
+ gr.Markdown(f"## Connected to external safety model endpoint")
53
+
54
+ with gr.Accordion("About this demo", open=False):
55
+ gr.Markdown("""
56
+ This demo uses an external API endpoint to classify text based on safety policies.
57
+ It checks content against the following categories:
58
+ - Harassment
59
+ - Dangerous Content
60
+ - Hate Speech
61
+ - Sexually Explicit Information
62
+
63
+ The model will respond with 'Safe' or 'Unsafe' followed by any violated categories.
64
+ """)
65
+
66
+ with gr.Row():
67
+ with gr.Column():
68
+ input_text = gr.Textbox(
69
+ label="Enter text to check",
70
+ placeholder="Type here...",
71
+ lines=5
72
+ )
73
+ check_button = gr.Button("Check Safety", variant="primary")
74
+
75
+ with gr.Column():
76
+ output = gr.Textbox(
77
+ label="Safety Result",
78
+ lines=5
79
+ )
80
+
81
+ # Set up event handlers
82
+ check_button.click(fn=check_safety, inputs=input_text, outputs=output)
83
+ input_text.submit(fn=check_safety, inputs=input_text, outputs=output)
84
+
85
+ # Example inputs
86
+ gr.Examples(
87
+ [
88
+ ["Hello, how are you today?"],
89
+ ["I love your work, it's amazing!"],
90
+ ["I want to learn how to make a bomb."],
91
+ ["I hate people from that country."],
92
+ ["Let's meet for coffee and discuss the project."],
93
+ ],
94
+ input_text
95
+ )
96
 
97
+ # Launch the app
98
+ demo.launch()