File size: 9,235 Bytes
6039d0c
2b295d5
 
7a3df70
 
 
2b295d5
6039d0c
7a3df70
6039d0c
 
7a3df70
 
 
 
6039d0c
7a3df70
2b295d5
6039d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3df70
 
6039d0c
2b295d5
 
 
 
 
7a3df70
2b295d5
 
 
 
 
 
 
 
 
 
 
 
 
7a3df70
2b295d5
 
 
 
 
7a3df70
 
 
 
6039d0c
7a3df70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b295d5
7a3df70
 
 
6039d0c
7a3df70
 
 
2b295d5
7a3df70
 
 
6039d0c
7a3df70
 
 
6039d0c
7a3df70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6039d0c
 
2b295d5
 
 
 
 
 
 
6039d0c
 
 
7a3df70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6039d0c
7a3df70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6039d0c
7a3df70
 
 
 
 
 
 
6039d0c
 
 
 
7a3df70
2b295d5
6039d0c
 
 
7a3df70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import re
import psycopg2
from flask import Flask, request, jsonify
import google.generativeai as genai
from flask import Response
import json

# --- إعدادات Flask ---
app = Flask(__name__)

# --- إعدادات Gemini ---
GEMINI_API_KEY = "AIzaSyCWukRy76nPgkrMflCTWh_s4gEU--wSVr8"  # يفضل استخدام متغيرات البيئة
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.0-flash')

# --- إعدادات Supabase ---
SUPABASE_DB_URL = "postgresql://postgres.mougnkvoyyhcuxeeqvmh:Xf5E0DhUvKEHEAqq@aws-0-eu-central-1.pooler.supabase.com:6543/postgres"

# --- سكيمة قاعدة البيانات ---
DB_SCHEMA = """

CREATE TABLE public.profiles (

  id uuid NOT NULL,

  updated_at timestamp with time zone,

  username text UNIQUE CHECK (char_length(username) >= 3),

  full_name text,

  avatar_url text,

  website text,

  cam_mac text UNIQUE,

  fcm_token text,

  notification_enabled boolean DEFAULT true,

  CONSTRAINT profiles_pkey PRIMARY KEY (id),

  CONSTRAINT profiles_id_fkey FOREIGN KEY (id) REFERENCES auth.users(id)

);



CREATE TABLE public.place (

  id bigint GENERATED ALWAYS AS IDENTITY NOT NULL,

  created_at timestamp with time zone DEFAULT (now() AT TIME ZONE 'utc'::text),

  name text,

  CONSTRAINT place_pkey PRIMARY KEY (id)

);



CREATE TABLE public.user_place (

  id bigint GENERATED ALWAYS AS IDENTITY NOT NULL,

  created_at timestamp with time zone NOT NULL DEFAULT now(),

  place_id bigint,

  user_cam_mac text,

  CONSTRAINT user_place_pkey PRIMARY KEY (id),

  CONSTRAINT user_place_place_id_fkey FOREIGN KEY (place_id) REFERENCES public.place(id),

  CONSTRAINT user_place_user_cam_mac_fkey FOREIGN KEY (user_cam_mac) REFERENCES public.profiles(cam_mac)

);



CREATE TABLE public.data (

  id bigint GENERATED ALWAYS AS IDENTITY NOT NULL,

  created_at timestamp without time zone,

  caption text,

  image_url text,

  latitude double precision DEFAULT '36.1833854'::double precision,

  longitude double precision DEFAULT '37.1309255'::double precision,

  user_place_id bigint,

  cam_mac text,

  CONSTRAINT data_pkey PRIMARY KEY (id),

  CONSTRAINT data_user_place_id_fkey FOREIGN KEY (user_place_id) REFERENCES public.user_place(id)

);



CREATE TABLE public.biodata (

  id bigint GENERATED ALWAYS AS IDENTITY NOT NULL,

  created_at timestamp with time zone NOT NULL DEFAULT now(),

  mac_address text,

  acceleration_x double precision,

  acceleration_y double precision,

  acceleration_z double precision,

  gyro_x double precision,

  gyro_y double precision,

  gyro_z double precision,

  temperature double precision,

  CONSTRAINT biodata_pkey PRIMARY KEY (id),

  CONSTRAINT biodata_mac_address_fkey FOREIGN KEY (mac_address) REFERENCES public.profiles(cam_mac)

);



CREATE TABLE public.notification (

  id bigint GENERATED ALWAYS AS IDENTITY NOT NULL,

  created_at timestamp without time zone NOT NULL DEFAULT now(),

  user_cam_mac text,

  title text,

  message text,

  is_read boolean,

  acceleration_x double precision,

  acceleration_y double precision,

  acceleration_z double precision,

  gyro_x double precision,

  gyro_y double precision,

  gyro_z double precision,

  CONSTRAINT notification_pkey PRIMARY KEY (id),

  CONSTRAINT notification_user_cam_mac_fkey FOREIGN KEY (user_cam_mac) REFERENCES public.profiles(cam_mac)

);



CREATE TABLE public.flag (

  id bigint GENERATED ALWAYS AS IDENTITY NOT NULL,

  flag smallint,

  user_mac_address text,

  CONSTRAINT flag_pkey PRIMARY KEY (id),

  CONSTRAINT flag_user_mac_address_fkey FOREIGN KEY (user_mac_address) REFERENCES public.profiles(cam_mac)

);



"""

# --- الاتصال بقاعدة البيانات ---
def get_db_connection():
    try:
        return psycopg2.connect(SUPABASE_DB_URL)
    except Exception as err:
        print(f"Database connection error: {err}")
        return None

# --- التحقق من صحة cam_mac ---
def validate_cam_mac(cam_mac):
    conn = get_db_connection()
    if not conn:
        return False
        
    try:
        cursor = conn.cursor()
        cursor.execute("SELECT 1 FROM profiles WHERE cam_mac = %s;", (cam_mac,))
        return cursor.fetchone() is not None
    except Exception as e:
        print(f"Validation error: {e}")
        return False
    finally:
        if conn:
            conn.close()

# --- توليد SQL باستخدام Gemini مع تخصيص حسب cam_mac ---
def generate_sql_gemini(natural_language_query, cam_mac):
    prompt = f"""YYou are a PostgreSQL expert.

Your job is to convert a natural language query into a SQL SELECT statement, based on the following database schema.



The query **must always be filtered by the camera MAC address: '{cam_mac}'**, using the appropriate field.



Schema:

{DB_SCHEMA}



Schema Description:



1. **profiles**

   - Represents users/devices.

   - cam_mac (TEXT, UNIQUE) is the MAC address of the camera device.

   - Linked to most tables using cam_mac.



2. **data**

   - Stores captured image info (image_url, caption, created_at, etc.).

   - Linked via cam_mac and user_place_id.

   - To find places, JOIN with `user_place` → `place`.



3. **biodata**

   - Contains sensor readings (acceleration, gyro, temp).

   - Linked via mac_address to profiles.cam_mac.



4. **notification**

   - Stores alerts/messages for the user.

   - Linked via user_cam_mac to profiles.cam_mac.



5. **flag**

   - Represents boolean flags (e.g. status).

   - Linked via user_mac_address to profiles.cam_mac.



6. **user_place**

   - Connects a user_cam_mac to a place_id.

   - JOIN with `place` to get the name.



7. **place**

   - List of place names.



Rules:

- If the question is about number of visits, frequency, or attendance to a specific place, use the `data` table.

- Use **only SELECT** statements.

- Use only the provided schema.

- Use **camel_mac** filter in WHERE clause.

- Use proper JOINs (no subqueries unless necessary).

- Always match table relationships correctly:

    data.user_place_id = user_place.id

    user_place.place_id = place.id

    user_place.user_cam_mac = profiles.cam_mac

- Use table aliases (like d, p, up, pl) when helpful.

- The output must contain only the SQL query, no comments or explanations.

- Add a semicolon at the end.





Question: "{natural_language_query}"





SQL:"""

    try:
        response = model.generate_content(prompt)
        sql = response.text.strip()

        # تنظيف الناتج
        sql = re.sub(r"^```sql\s*", "", sql, flags=re.IGNORECASE)
        sql = re.sub(r"\s*```$", "", sql)
        sql = re.sub(r"^SQL:\s*", "", sql, flags=re.IGNORECASE)

        if not sql.upper().startswith("SELECT"):
            sql = "SELECT " + sql.split("SELECT")[-1] if "SELECT" in sql else f"SELECT * FROM ({sql}) AS subquery"

        if not sql.endswith(";"):
            sql += ";"

        return sql
    except Exception as e:
        print(f"Gemini error: {e}")
        return None

# --- نقطة النهاية الرئيسية ---
@app.route('/api/query', methods=['POST'])
def handle_query():
    data = request.get_json()
    if not data or 'text' not in data or 'cam_mac' not in data:
        return jsonify({"error": "Please send 'text' and 'cam_mac' in the request body"}), 400

    natural_query = data['text']
    cam_mac = data['cam_mac']
    print(f"Natural query from {cam_mac}: {natural_query}")
    
    # التحقق من صحة cam_mac
    if not validate_cam_mac(cam_mac):
        return jsonify({"error": "Invalid cam_mac address"}), 403
    
    sql_query = generate_sql_gemini(natural_query, cam_mac)

    if not sql_query:
        return jsonify({"error": "Failed to generate SQL query"}), 500

    print(f"Generated SQL: {sql_query}")

    if not sql_query.upper().strip().startswith("SELECT"):
        return jsonify({"error": "Only SELECT queries are allowed"}), 403

    conn = get_db_connection()
    if not conn:
        return jsonify({"error": "Database connection failed"}), 500

    cursor = None
    try:
        cursor = conn.cursor()
        cursor.execute(sql_query)
        columns = [desc[0] for desc in cursor.description]
        rows = cursor.fetchall()
        data = [dict(zip(columns, row)) for row in rows]

        response_data = {
            "data": data,
        }
        
        response_json = json.dumps(response_data, ensure_ascii=False)
        
        return Response(
            response_json,
            status=200,
            mimetype='application/json; charset=utf-8'
        )
        
    except Exception as e:
        print(f"SQL execution error: {e}")
        return jsonify({"error": str(e), "generated_sql": sql_query}), 500
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

@app.route('/')
def home():
    return """

    <h1>Natural Language to SQL API (Gemini)</h1>

    <p>Use <code>/api/query</code> with POST {"text": "your question", "cam_mac": "device_mac_address"}.</p>

    """

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)