import gradio as gr from transformers import AutoTokenizer import pandas as pd import re from datetime import datetime from huggingface_hub import HfApi, DatasetCard, DatasetCardData, create_repo from gradio_huggingfacehub_search import HuggingfaceHubSearch import os import tempfile import re # --- Configuration --- HF_TOKEN = os.getenv("HF_TOKEN") DATASET_REPO_ID = os.getenv("DATASET_REPO", "Lyte/tokenizer-leaderboard") DATASET_FILE_NAME = "leaderboard.csv" PREDEFINED_TEXT = ''' import gradio as gr from transformers import AutoTokenizer import pandas as pd import re from datetime import datetime from huggingface_hub import HfApi, DatasetCard, DatasetCardData, create_repo from gradio_huggingfacehub_search import HuggingfaceHubSearch import os import tempfile # --- Configuration --- HF_TOKEN = os.getenv("HF_TOKEN") DATASET_REPO_ID = os.getenv("DATASET_REPO", "Lyte/tokenizer-leaderboard") DATASET_FILE_NAME = "leaderboard.csv" PREDEFINED_TEXT = """ The quick brown fox jumps over 12 lazy dogs! 🐕🦺 Special characters: #@%^&*()_+-=[]{}|;:'",.<>/?\\~ Code samples: - Python: def hello(): print("Hello World! 2023") - HTML: <div class="container" id="main">Content</div> - JSON: {"key": "value", "numbers": [1, 2, 3.14]} Math equations: E = mc² → 3×10⁸ m/s Multilingual text: 速い茶色の狐が怠惰な犬を飛び越える 😸 Emojis: 👍🎉🚀❤️🔥 Mixed casing: OpenAI's GPT-4 vs gpt-3.5-turbo """ WORD_COUNT = len(re.findall(r'\S+', PREDEFINED_TEXT)) LEADERBOARD_COLUMNS = [ "Model ID", "Token Count", "Vocab Size", "Tokens/Word", "Chars/Token", "Timestamp" ] # --- Hugging Face Hub Functions --- def create_huggingface_dataset(): """Creates the dataset repository on the Hub if it doesn't exist.""" try: api = HfApi(token=HF_TOKEN) create_repo(repo_id=DATASET_REPO_ID, token=HF_TOKEN, repo_type="dataset", exist_ok=True) card_data = DatasetCardData( language="en", license="mit", size_categories=["1K<n<10K"], tags=["tokenizer", "leaderboard", "performance", "gradio"], ) card = DatasetCard.from_template( card_data, template_path=None, Title="Tokenizer Leaderboard", Description="A leaderboard of tokenizer performance based on various metrics.", How_to_use="The leaderboard data is stored in a CSV file named 'leaderboard.csv'.", ) card.push_to_hub(repo_id=DATASET_REPO_ID, token=HF_TOKEN) print(f"Dataset repository '{DATASET_REPO_ID}' created (or already exists).") except Exception as e: print(f"Error creating dataset repository: {e}") raise def load_leaderboard_from_hub(): """Loads the leaderboard data from the Hugging Face Hub as a pandas DataFrame.""" try: api = HfApi(token=HF_TOKEN) dataset_path = api.dataset_info(repo_id=DATASET_REPO_ID, token=HF_TOKEN).siblings csv_file_info = next((file for file in dataset_path if file.rfilename == DATASET_FILE_NAME), None) if csv_file_info is None: print(f"'{DATASET_FILE_NAME}' not found in '{DATASET_REPO_ID}'. Returning an empty DataFrame") return pd.DataFrame(columns=LEADERBOARD_COLUMNS) file_path = api.hf_hub_download(repo_id=DATASET_REPO_ID, filename=DATASET_FILE_NAME, repo_type="dataset") df = pd.read_csv(file_path) df = df.sort_values(by="Token Count", ascending=True) df["Tokens/Word"] = df["Tokens/Word"].round(2) df["Chars/Token"] = df["Chars/Token"].round(2) return df except Exception as e: print(f"Error loading leaderboard from Hugging Face Hub: {e}") return pd.DataFrame(columns=LEADERBOARD_COLUMNS) def push_leaderboard_to_hub(df): """Pushes the updated leaderboard DataFrame to the Hugging Face Hub.""" try: with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".csv") as tmpfile: df.to_csv(tmpfile.name, index=False) tmp_path = tmpfile.name api = HfApi(token=HF_TOKEN) api.upload_file( path_or_fileobj=tmp_path, path_in_repo=DATASET_FILE_NAME, repo_id=DATASET_REPO_ID, repo_type="dataset", token=HF_TOKEN, commit_message="Update leaderboard" ) os.remove(tmp_path) print(f"Leaderboard updated and pushed to {DATASET_REPO_ID}") except Exception as e: print(f"Error pushing leaderboard to Hugging Face Hub: {e}") raise # --- Utility Functions --- def get_tokenizer_stats(model_id, text): if not model_id: raise ValueError("No model ID provided") try: tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True) tokens = tokenizer.encode(text, add_special_tokens=False) text_length = len(text) return { "token_count": len(tokens), "vocab_size": tokenizer.vocab_size, "token_word_ratio": round(len(tokens) / WORD_COUNT, 2), "chars_per_token": round(text_length / len(tokens), 2) if tokens else 0 } except Exception as e: raise RuntimeError(f"Failed to load tokenizer or encode text: {str(e)}") from e def is_model_in_leaderboard(df, model_id): return model_id in df["Model ID"].values def add_to_leaderboard(model_id): if not model_id: return "❌ Error: No model ID provided" df = load_leaderboard_from_hub() if is_model_in_leaderboard(df, model_id): return "⚠️ Model already in leaderboard" try: stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT) new_row = pd.DataFrame([{ "Model ID": model_id, "Token Count": stats["token_count"], "Vocab Size": stats["vocab_size"], "Tokens/Word": stats["token_word_ratio"], "Chars/Token": stats["chars_per_token"], "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") }]) updated_df = pd.concat([df, new_row], ignore_index=True) push_leaderboard_to_hub(updated_df) return "✅ Added to leaderboard!" except Exception as e: return f"❌ Error: {str(e)}" def analyze_tokenizer(model_id, text): if not model_id: return "❌ Error: Please select or enter a model ID" try: stats = get_tokenizer_stats(model_id, text) return ( f"Token Count: {stats['token_count']}\n" f"Vocab Size: {stats['vocab_size']}\n" f"Tokens/Word: {stats['token_word_ratio']:.2f}\n" f"Chars/Token: {stats['chars_per_token']:.2f}" ) except Exception as e: return f"❌ Analysis Failed: {str(e)}" def compare_tokenizers(model_ids_str, use_standard_text): try: model_list = [mid.strip() for mid in model_ids_str.split(',') if mid.strip()] if not model_list: return pd.DataFrame({"Error": ["No models provided"]}) results = [] for model_id in model_list: try: stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT) results.append({ "Model ID": model_id, "Tokens": stats["token_count"], "Vocab Size": stats["vocab_size"], "Tokens/Word": f"{stats['token_word_ratio']:.2f}", "Chars/Token": f"{stats['chars_per_token']:.2f}", "Status": "✅ Success" }) except Exception as e: results.append({ "Model ID": model_id, "Tokens": "-", "Vocab Size": "-", "Tokens/Word": "-", "Chars/Token": "-", "Status": f"❌ {str(e)}" }) return pd.DataFrame(results) except Exception as e: return pd.DataFrame({"Error": [str(e)]}) def get_leaderboard_for_download(): """Loads, prepares, and returns a Gradio File object for download.""" try: df = load_leaderboard_from_hub() with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmpfile: df.to_csv(tmpfile.name, index=False) # Return a Gradio File object, NOT just the path return gr.File(value=tmpfile.name, label="Download CSV") except Exception as e: print(f"Error preparing file for download: {e}") return None def initial_benchmark_run(): try: print("Starting initial benchmark run...") default_models = [ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "Qwen/Qwen2.5-7B-Instruct-1M", "simplescaling/s1.1-32B", "Xenova/gpt-4o", "microsoft/phi-4", "deepseek-ai/DeepSeek-R1", "google/gemma-2-27b-it", "HuggingFaceTB/SmolLM2-135M-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "tomg-group-umd/huginn-0125", "microsoft/Phi-3.5-mini-instruct", "openai-community/gpt2" ] df = load_leaderboard_from_hub() for model_id in default_models: try: if not is_model_in_leaderboard(df, model_id): print(f"Benchmarking {model_id}...") result = add_to_leaderboard(model_id) print(f"Result for {model_id}: {result}") else: print(f"{model_id} already in leaderboard, skipping.") except Exception as e: print(f"Error benchmarking {model_id}: {str(e)}") print("Initial benchmarking complete.") except Exception as e: print(f"Fatal error in initial benchmark: {str(e)}") # --- Gradio Interface --- with gr.Blocks(title="Tokenizers Leaderboard", theme=gr.themes.Soft()) as iface: gr.Markdown("# 🏆 Tokenizers Leaderboard") with gr.Tab("Analyze"): gr.Markdown("## Single Tokenizer Analysis") with gr.Row(): model_search = HuggingfaceHubSearch(label="Search Models", placeholder="Search Hugging Face models...", search_type="model") custom_model = gr.Textbox(label="Direct Model ID", placeholder="e.g.: mistralai/Mistral-7B-Instruct-v0.3", max_lines=1) model_id = gr.Textbox(visible=False) gr.Markdown("### Input Text") text_input = gr.Textbox(lines=5, value=PREDEFINED_TEXT, label="Analysis Text") with gr.Row(): analyze_btn = gr.Button("Analyze", variant="primary") add_btn = gr.Button("Add to Leaderboard") analysis_output = gr.Textbox(label="Results", interactive=False) model_search.change(lambda x: x, model_search, model_id) custom_model.change(lambda x: x, custom_model, model_id) analyze_btn.click(analyze_tokenizer, [model_id, text_input], analysis_output) add_event = add_btn.click(add_to_leaderboard, model_id, analysis_output) with gr.Tab("Compare"): gr.Markdown("## Multi-Model Comparison") gr.Markdown(f"**Standard Text:** `{PREDEFINED_TEXT[:80]}...`") model_ids = gr.Textbox(label="Model IDs (comma-separated)", placeholder="Enter models: meta-llama/Llama-2-7b, google/gemma-7b, ...") compare_btn = gr.Button("Compare Models", variant="primary") comparison_table = gr.DataFrame(label="Results", interactive=False) compare_btn.click(compare_tokenizers, [model_ids, gr.Checkbox(value=True, visible=False)], comparison_table) with gr.Tab("Leaderboard"): gr.Markdown("## Performance Leaderboard") with gr.Row(): download_btn = gr.DownloadButton(label="Download CSV", value="tokenizer_leaderboard.csv") leaderboard_table = gr.DataFrame(label="Top Tokenizers", headers=LEADERBOARD_COLUMNS, interactive=False, datatype=["str", "number", "number", "number", "number", "str"]) # Connect the download button to the function that prepares the CSV download_btn.click(get_leaderboard_for_download, inputs=[], outputs=download_btn) iface.load(fn=load_leaderboard_from_hub, outputs=leaderboard_table) add_event.then(load_leaderboard_from_hub, None, leaderboard_table) create_huggingface_dataset() initial_benchmark_run() iface.launch() ''' WORD_COUNT = len(re.findall(r'\S+', PREDEFINED_TEXT)) LEADERBOARD_COLUMNS = [ "Model ID", "Token Count", "Vocab Size", "Tokens/Word", "Chars/Token", "Timestamp" ] # --- Hugging Face Hub Functions --- def create_huggingface_dataset(): """Creates the dataset repository on the Hub if it doesn't exist.""" try: api = HfApi(token=HF_TOKEN) create_repo(repo_id=DATASET_REPO_ID, token=HF_TOKEN, repo_type="dataset", exist_ok=True) card_data = DatasetCardData( language="en", license="mit", size_categories=["1K<n<10K"], tags=["tokenizer", "leaderboard", "performance", "gradio"], ) card = DatasetCard.from_template( card_data, template_path=None, Title="Tokenizer Leaderboard", Description="A leaderboard of tokenizer performance based on various metrics.", How_to_use="The leaderboard data is stored in a CSV file named 'leaderboard.csv'.", ) card.push_to_hub(repo_id=DATASET_REPO_ID, token=HF_TOKEN) print(f"Dataset repository '{DATASET_REPO_ID}' created (or already exists).") except Exception as e: print(f"Error creating dataset repository: {e}") raise def load_leaderboard_from_hub(): """Loads the leaderboard data from the Hugging Face Hub as a pandas DataFrame.""" try: api = HfApi(token=HF_TOKEN) dataset_path = api.dataset_info(repo_id=DATASET_REPO_ID, token=HF_TOKEN).siblings csv_file_info = next((file for file in dataset_path if file.rfilename == DATASET_FILE_NAME), None) if csv_file_info is None: print(f"'{DATASET_FILE_NAME}' not found in '{DATASET_REPO_ID}'. Returning an empty DataFrame") return pd.DataFrame(columns=LEADERBOARD_COLUMNS) file_path = api.hf_hub_download(repo_id=DATASET_REPO_ID, filename=DATASET_FILE_NAME, repo_type="dataset") df = pd.read_csv(file_path) df = df.sort_values(by="Token Count", ascending=True) df["Tokens/Word"] = df["Tokens/Word"].round(2) df["Chars/Token"] = df["Chars/Token"].round(2) return df except Exception as e: print(f"Error loading leaderboard from Hugging Face Hub: {e}") return pd.DataFrame(columns=LEADERBOARD_COLUMNS) def push_leaderboard_to_hub(df): """Pushes the updated leaderboard DataFrame to the Hugging Face Hub.""" try: with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".csv") as tmpfile: df.to_csv(tmpfile.name, index=False) tmp_path = tmpfile.name api = HfApi(token=HF_TOKEN) api.upload_file( path_or_fileobj=tmp_path, path_in_repo=DATASET_FILE_NAME, repo_id=DATASET_REPO_ID, repo_type="dataset", token=HF_TOKEN, commit_message="Update leaderboard" ) os.remove(tmp_path) print(f"Leaderboard updated and pushed to {DATASET_REPO_ID}") except Exception as e: print(f"Error pushing leaderboard to Hugging Face Hub: {e}") raise # --- Utility Functions --- def get_tokenizer_stats(model_id, text): if not model_id: raise ValueError("No model ID provided") try: tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True) tokens = tokenizer.encode(text, add_special_tokens=False) text_length = len(text) return { "token_count": len(tokens), "vocab_size": tokenizer.vocab_size, "token_word_ratio": round(len(tokens) / WORD_COUNT, 2), "chars_per_token": round(text_length / len(tokens), 2) if tokens else 0 } except Exception as e: raise RuntimeError(f"Failed to load tokenizer or encode text: {str(e)}") from e def is_model_in_leaderboard(df, model_id): return model_id in df["Model ID"].values def add_to_leaderboard(model_id): if not model_id: return "❌ Error: No model ID provided" df = load_leaderboard_from_hub() if is_model_in_leaderboard(df, model_id): return "⚠️ Model already in leaderboard" try: stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT) new_row = pd.DataFrame([{ "Model ID": model_id, "Token Count": stats["token_count"], "Vocab Size": stats["vocab_size"], "Tokens/Word": stats["token_word_ratio"], "Chars/Token": stats["chars_per_token"], "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") }]) updated_df = pd.concat([df, new_row], ignore_index=True) push_leaderboard_to_hub(updated_df) return "✅ Added to leaderboard!" except Exception as e: return f"❌ Error: {str(e)}" def analyze_tokenizer(model_id, text): if not model_id: return "❌ Error: Please select or enter a model ID" try: stats = get_tokenizer_stats(model_id, text) return ( f"Token Count: {stats['token_count']}\n" f"Vocab Size: {stats['vocab_size']}\n" f"Tokens/Word: {stats['token_word_ratio']:.2f}\n" f"Chars/Token: {stats['chars_per_token']:.2f}" ) except Exception as e: return f"❌ Analysis Failed: {str(e)}" def compare_tokenizers(model_ids_str, use_standard_text): try: model_list = [mid.strip() for mid in model_ids_str.split(',') if mid.strip()] if not model_list: return pd.DataFrame({"Error": ["No models provided"]}) results = [] for model_id in model_list: try: stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT) results.append({ "Model ID": model_id, "Tokens": stats["token_count"], "Vocab Size": stats["vocab_size"], "Tokens/Word": f"{stats['token_word_ratio']:.2f}", "Chars/Token": f"{stats['chars_per_token']:.2f}", "Status": "✅ Success" }) except Exception as e: results.append({ "Model ID": model_id, "Tokens": "-", "Vocab Size": "-", "Tokens/Word": "-", "Chars/Token": "-", "Status": f"❌ {str(e)}" }) return pd.DataFrame(results) except Exception as e: return pd.DataFrame({"Error": [str(e)]}) def get_leaderboard_for_download(): """Loads, prepares, and returns a Gradio File object for download.""" try: df = load_leaderboard_from_hub() with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmpfile: df.to_csv(tmpfile.name, index=False) # Return a Gradio File object, NOT just the path return gr.File(value=tmpfile.name, label="Download CSV") except Exception as e: print(f"Error preparing file for download: {e}") return None def initial_benchmark_run(): try: print("Starting initial benchmark run...") default_models = [ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "Qwen/Qwen2.5-7B-Instruct-1M", "simplescaling/s1.1-32B", "Xenova/gpt-4o", "microsoft/phi-4", "deepseek-ai/DeepSeek-R1", "google/gemma-2-27b-it", "HuggingFaceTB/SmolLM2-135M-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "tomg-group-umd/huginn-0125", "microsoft/Phi-3.5-mini-instruct", "openai-community/gpt2" ] df = load_leaderboard_from_hub() for model_id in default_models: try: if not is_model_in_leaderboard(df, model_id): print(f"Benchmarking {model_id}...") result = add_to_leaderboard(model_id) print(f"Result for {model_id}: {result}") else: print(f"{model_id} already in leaderboard, skipping.") except Exception as e: print(f"Error benchmarking {model_id}: {str(e)}") print("Initial benchmarking complete.") except Exception as e: print(f"Fatal error in initial benchmark: {str(e)}") # --- Gradio Interface --- with gr.Blocks(title="Tokenizers Leaderboard", theme=gr.themes.Soft()) as iface: gr.Markdown("# 🏆 Tokenizers Leaderboard") with gr.Tab("Analyze"): gr.Markdown("## Single Tokenizer Analysis") with gr.Row(): model_search = HuggingfaceHubSearch(label="Search Models", placeholder="Search Hugging Face models...", search_type="model") custom_model = gr.Textbox(label="Direct Model ID", placeholder="e.g.: mistralai/Mistral-7B-Instruct-v0.3", max_lines=1) model_id = gr.Textbox(visible=False) gr.Markdown("### Input Text") text_input = gr.Textbox(lines=5, value=PREDEFINED_TEXT, label="Analysis Text") with gr.Row(): analyze_btn = gr.Button("Analyze", variant="primary") add_btn = gr.Button("Add to Leaderboard") analysis_output = gr.Textbox(label="Results", interactive=False) model_search.change(lambda x: x, model_search, model_id) custom_model.change(lambda x: x, custom_model, model_id) analyze_btn.click(analyze_tokenizer, [model_id, text_input], analysis_output) add_event = add_btn.click(add_to_leaderboard, model_id, analysis_output) with gr.Tab("Compare"): gr.Markdown("## Multi-Model Comparison") gr.Markdown(f"**Standard Text:** `{PREDEFINED_TEXT[:80]}...`") model_ids = gr.Textbox(label="Model IDs (comma-separated)", placeholder="Enter models: meta-llama/Llama-2-7b, google/gemma-7b, ...") compare_btn = gr.Button("Compare Models", variant="primary") comparison_table = gr.DataFrame(label="Results", interactive=False) compare_btn.click(compare_tokenizers, [model_ids, gr.Checkbox(value=True, visible=False)], comparison_table) with gr.Tab("Leaderboard"): gr.Markdown("## Performance Leaderboard") gr.Markdown(f"The tokenizers are run on a predefined text of {len(PREDEFINED_TEXT)} Length which has a word count of {WORD_COUNT}") with gr.Row(): download_btn = gr.DownloadButton(label="Download CSV", value="tokenizer_leaderboard.csv") leaderboard_table = gr.DataFrame(label="Top Tokenizers", headers=LEADERBOARD_COLUMNS, interactive=False, datatype=["str", "number", "number", "number", "number", "str"]) # Connect the download button to the function that prepares the CSV download_btn.click(get_leaderboard_for_download, inputs=[], outputs=download_btn) iface.load(fn=load_leaderboard_from_hub, outputs=leaderboard_table) add_event.then(load_leaderboard_from_hub, None, leaderboard_table) create_huggingface_dataset() initial_benchmark_run() iface.launch()