Lyon28 commited on
Commit
bc44dae
·
verified ·
1 Parent(s): 2ebd04c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
+ from transformers import pipeline
4
+ import torch
5
+ from fastapi.middleware.cors import CORSMiddleware
6
+
7
+ app = FastAPI(title="Model Inference API")
8
+
9
+ # Allow CORS for external frontend
10
+ app.add_middleware(
11
+ CORSMiddleware,
12
+ allow_origins=["*"],
13
+ allow_methods=["*"],
14
+ allow_headers=["*"],
15
+ )
16
+
17
+ MODEL_MAP = {
18
+ "tinny-llama": "Lyon28/Tinny-Llama",
19
+ "pythia": "Lyon28/Pythia",
20
+ "bert-tinny": "Lyon28/Bert-Tinny",
21
+ "albert-base-v2": "Lyon28/Albert-Base-V2",
22
+ "t5-small": "Lyon28/T5-Small",
23
+ "gpt-2": "Lyon28/GPT-2",
24
+ "gpt-neo": "Lyon28/GPT-Neo",
25
+ "distilbert-base-uncased": "Lyon28/Distilbert-Base-Uncased",
26
+ "distil-gpt-2": "Lyon28/Distil_GPT-2",
27
+ "gpt-2-tinny": "Lyon28/GPT-2-Tinny",
28
+ "electra-small": "Lyon28/Electra-Small"
29
+ }
30
+
31
+ TASK_MAP = {
32
+ "text-generation": ["gpt-2", "gpt-neo", "distil-gpt-2", "gpt-2-tinny", "tinny-llama", "pythia"],
33
+ "text-classification": ["bert-tinny", "albert-base-v2", "distilbert-base-uncased", "electra-small"],
34
+ "text2text-generation": ["t5-small"]
35
+ }
36
+
37
+ class InferenceRequest(BaseModel):
38
+ text: str
39
+ max_length: int = 100
40
+ temperature: float = 0.9
41
+
42
+ def get_task(model_id: str):
43
+ for task, models in TASK_MAP.items():
44
+ if model_id in models:
45
+ return task
46
+ return "text-generation"
47
+
48
+ @app.on_event("startup")
49
+ async def load_models():
50
+ # Initialize models (optional: pre-load critical models)
51
+ app.state.pipelines = {}
52
+ print("Models initialized in memory")
53
+
54
+ @app.post("/inference/{model_id}")
55
+ async def model_inference(model_id: str, request: InferenceRequest):
56
+ try:
57
+ if model_id not in MODEL_MAP:
58
+ raise HTTPException(status_code=404, detail="Model not found")
59
+
60
+ task = get_task(model_id)
61
+
62
+ # Load pipeline with caching
63
+ if model_id not in app.state.pipelines:
64
+ app.state.pipelines[model_id] = pipeline(
65
+ task=task,
66
+ model=MODEL_MAP[model_id],
67
+ device_map="auto",
68
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
69
+ )
70
+
71
+ pipe = app.state.pipelines[model_id]
72
+
73
+ # Process based on task
74
+ if task == "text-generation":
75
+ result = pipe(
76
+ request.text,
77
+ max_length=request.max_length,
78
+ temperature=request.temperature
79
+ )[0]['generated_text']
80
+
81
+ elif task == "text-classification":
82
+ output = pipe(request.text)[0]
83
+ result = {
84
+ "label": output['label'],
85
+ "confidence": round(output['score'], 4)
86
+ }
87
+
88
+ elif task == "text2text-generation":
89
+ result = pipe(request.text)[0]['generated_text']
90
+
91
+ return {"result": result}
92
+
93
+ except Exception as e:
94
+ raise HTTPException(status_code=500, detail=str(e))
95
+
96
+ @app.get("/models")
97
+ async def list_models():
98
+ return {"available_models": list(MODEL_MAP.keys())}
99
+
100
+ @app.get("/health")
101
+ async def health_check():
102
+ return {"status": "healthy"}