Spaces:
Running
Running
import os | |
from pathlib import Path | |
import numpy as np | |
import sherpa_onnx | |
import scipy.signal | |
from opencc import OpenCC | |
from huggingface_hub import hf_hub_download | |
from typing import List | |
import tempfile | |
from sentencepiece import SentencePieceProcessor | |
# Ensure Hugging Face cache is in a user-writable directory | |
CACHE_DIR = Path(__file__).parent / "hf_cache" | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
to_ZHTW = OpenCC('s2t') | |
to_ZHCN = OpenCC('t2s') | |
# Streaming Zipformer model registry: paths relative to repo root | |
STREAMING_ZIPFORMER_MODELS = { | |
# bilingual zh-en with char+BPE | |
"csukuangfj/k2fsa-zipformer-bilingual-zh-en-t": { | |
"tokens": "data/lang_char_bpe/tokens.txt", | |
"encoder_fp32": "exp/96/encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "exp/96/encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "exp/96/decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "exp/96/decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "exp/96/joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "exp/96/joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"cjkchar+bpe", | |
"bpe_model": "data/lang_char_bpe/bpe.model", | |
}, | |
# mixed Chinese+English (char+BPE) | |
"pfluo/k2fsa-zipformer-chinese-english-mixed": { | |
"tokens": "data/lang_char_bpe/tokens.txt", | |
"encoder_fp32": "exp/encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "exp/encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "exp/decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": None, | |
"joiner_fp32": "exp/joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "exp/joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"cjkchar+bpe", | |
"bpe_model": "data/lang_char_bpe/bpe.model", | |
}, | |
# Korean-only (CJK chars) | |
"k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"cjkchar", | |
"bpe_model": "bpe.model", | |
}, | |
# multi Chinese (Hans) (CJK chars) | |
"k2-fsa/sherpa-onnx-streaming-zipformer-multi-zh-hans-2023-12-12": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-20-avg-1-chunk-16-left-128.onnx", | |
"encoder_int8": "encoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx", | |
"decoder_fp32": "decoder-epoch-20-avg-1-chunk-16-left-128.onnx", | |
"decoder_int8": "decoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx", | |
"joiner_fp32": "joiner-epoch-20-avg-1-chunk-16-left-128.onnx", | |
"joiner_int8": "joiner-epoch-20-avg-1-chunk-16-left-128.int8.onnx", | |
"modeling_unit":"cjkchar", | |
"bpe_model": "bpe.model", | |
}, | |
# wenetspeech streaming (CJK chars) | |
"pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615": { | |
"tokens": "data/lang_char/tokens.txt", | |
"encoder_fp32": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.onnx", | |
"encoder_int8": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx", | |
"decoder_fp32": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx", | |
"decoder_int8": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx", | |
"joiner_fp32": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx", | |
"joiner_int8": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.int8.onnx", | |
"modeling_unit":"cjkchar", | |
"bpe_model": None, | |
}, | |
# English-only (BPE) | |
"csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-26": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1-chunk-16-left-128.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1-chunk-16-left-128.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1-chunk-16-left-128.onnx", | |
"decoder_int8": None, | |
"joiner_fp32": "joiner-epoch-99-avg-1-chunk-16-left-128.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1-chunk-16-left-128.int8.onnx", | |
"modeling_unit":"bpe", | |
"bpe_model": "bpe.model", | |
}, | |
"csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-21": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"bpe", | |
"bpe_model": None, | |
}, | |
"csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-02-21": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"bpe", | |
"bpe_model": None, | |
}, | |
# older bilingual zh-en (cjkchar+BPE) β no bpe.vocab shipped | |
"csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"cjkchar+bpe", | |
"bpe_model": "bpe.model", | |
}, | |
# French-only (BPE) | |
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-29-avg-9-with-averaged-model.onnx", | |
"encoder_int8": "encoder-epoch-29-avg-9-with-averaged-model.int8.onnx", | |
"decoder_fp32": "decoder-epoch-29-avg-9-with-averaged-model.onnx", | |
"decoder_int8": "decoder-epoch-29-avg-9-with-averaged-model.int8.onnx", | |
"joiner_fp32": "joiner-epoch-29-avg-9-with-averaged-model.onnx", | |
"joiner_int8": "joiner-epoch-29-avg-9-with-averaged-model.int8.onnx", | |
"modeling_unit":"bpe", | |
"bpe_model": None, | |
}, | |
# Chinese-only small (CJK chars) | |
"csukuangfj/sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"cjkchar", | |
"bpe_model": None, | |
}, | |
# English-only 20M (BPE) | |
"csukuangfj/sherpa-onnx-streaming-zipformer-en-20M-2023-02-17": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-99-avg-1.onnx", | |
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx", | |
"decoder_fp32": "decoder-epoch-99-avg-1.onnx", | |
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx", | |
"joiner_fp32": "joiner-epoch-99-avg-1.onnx", | |
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx", | |
"modeling_unit":"bpe", | |
"bpe_model": None, | |
}, | |
"csukuangfj/sherpa-onnx-streaming-zipformer-ar_en_id_ja_ru_th_vi_zh-2025-02-10": { | |
"tokens": "tokens.txt", | |
"encoder_fp32": "encoder-epoch-75-avg-11-chunk-16-left-128.int8.onnx", | |
"encoder_int8": None, | |
"decoder_fp32": "decoder-epoch-75-avg-11-chunk-16-left-128.onnx", | |
"decoder_int8": None, | |
"joiner_fp32": "joiner-epoch-75-avg-11-chunk-16-left-128.int8.onnx", | |
"joiner_int8": None, | |
"modeling_unit":"cjkchar+bpe", | |
"bpe_model": "bpe.model", | |
}, | |
} | |
# Audio resampling utility | |
def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray: | |
return scipy.signal.resample_poly(audio, target_sr, orig_sr) | |
# Create an online recognizer for a given model and precision | |
# model_id: full HF repo ID | |
# precision: "int8" or "fp32" | |
def create_recognizer( | |
model_id: str, | |
precision: str, | |
hotwords: List[str] = None, | |
hotwords_score: float = 0.0, | |
ep_rule1: float = 2.4, | |
ep_rule2: float = 1.2, | |
ep_rule3: int = 300, | |
): | |
if model_id not in STREAMING_ZIPFORMER_MODELS: | |
raise ValueError(f"Model '{model_id}' is not registered.") | |
entry = STREAMING_ZIPFORMER_MODELS[model_id] | |
tokens_file = entry['tokens'] | |
encoder_file = entry['encoder_int8'] if precision == 'int8' and entry['encoder_int8'] else entry['encoder_fp32'] | |
decoder_file = entry['decoder_int8'] if precision == 'int8' and entry['decoder_int8'] else entry['decoder_fp32'] | |
joiner_file = entry['joiner_int8'] if precision == 'int8' and entry['joiner_int8'] else entry['joiner_fp32'] | |
tokens_path = hf_hub_download(repo_id=model_id, filename=tokens_file, cache_dir=str(CACHE_DIR)) | |
encoder_path = hf_hub_download(repo_id=model_id, filename=encoder_file, cache_dir=str(CACHE_DIR)) | |
decoder_path = hf_hub_download(repo_id=model_id, filename=decoder_file, cache_dir=str(CACHE_DIR)) | |
joiner_path = hf_hub_download(repo_id=model_id, filename=joiner_file, cache_dir=str(CACHE_DIR)) | |
# Prepare BPE vocab from .model if provided | |
modeling_unit = entry.get("modeling_unit") | |
bpe_model_rel = entry.get("bpe_model") | |
bpe_vocab_path = None | |
if bpe_model_rel: | |
try: | |
bpe_model_path = hf_hub_download(model_id, bpe_model_rel, cache_dir=str(CACHE_DIR)) | |
print(f"[DEBUG] Downloaded bpe model: {bpe_model_path}") | |
# === export_bpe_vocab.py logic starts here === | |
sp = SentencePieceProcessor() | |
sp.Load(str(bpe_model_path)) | |
vocab_file = Path(CACHE_DIR) / f"{Path(bpe_model_rel).stem}.vocab" | |
with open(vocab_file, "w", encoding="utf-8") as vf: | |
for idx in range(sp.get_piece_size()): | |
piece = sp.id_to_piece(idx) | |
score = sp.get_score(idx) | |
vf.write(f"{piece}\t{score}\n") | |
bpe_vocab_path = str(vocab_file) | |
print(f"[DEBUG] Converted bpe model to vocab: {bpe_vocab_path}") | |
# === export_bpe_vocab.py logic ends here === | |
except Exception as e: | |
print(f"[WARNING] Failed to build BPE vocab from '{bpe_model_rel}': {e}") | |
bpe_vocab_path = None | |
# Decide if we should use beam-search hotword biasing | |
has_hot = bool(hotwords and hotwords_score > 0.0) | |
use_beam = has_hot and ("bpe" not in modeling_unit or bpe_vocab_path is not None) | |
if use_beam: | |
# Write hotword list to a temp file (one entry per line) | |
tf = tempfile.NamedTemporaryFile( | |
mode="w", delete=False, suffix=".txt", dir=str(CACHE_DIR) | |
) | |
for w in hotwords: | |
# Remove backslashes and angle-bracket tokens | |
clean = w.replace("\\", "").replace("<unk>", "").strip() | |
clean = to_ZHCN.convert(clean) # convert all hotword into zh-cn for zh-cn models | |
if clean: # only write non-empty lines | |
tf.write(f"{clean}\n") | |
tf.flush() | |
tf.close() | |
hotwords_file_path = tf.name | |
print(f"[DEBUG asr_worker] Written {len(hotwords)} hotwords to {hotwords_file_path} with score {hotwords_score}") | |
# Create beam-search recognizer with biasing :contentReference[oaicite:0]{index=0} | |
return sherpa_onnx.OnlineRecognizer.from_transducer( | |
tokens=tokens_path, | |
encoder=encoder_path, | |
decoder=decoder_path, | |
joiner=joiner_path, | |
provider="cpu", | |
num_threads=1, | |
sample_rate=16000, | |
feature_dim=80, | |
decoding_method="modified_beam_search", | |
hotwords_file=hotwords_file_path, | |
hotwords_score=hotwords_score, | |
modeling_unit=modeling_unit, | |
bpe_vocab=bpe_vocab_path, | |
# endpoint detection parameters | |
enable_endpoint_detection=True, | |
rule1_min_trailing_silence=ep_rule1, | |
rule2_min_trailing_silence=ep_rule2, | |
rule3_min_utterance_length=ep_rule3, | |
) | |
# βββ Fallback to original greedy-search (no hotword biasing) βββ | |
return sherpa_onnx.OnlineRecognizer.from_transducer( | |
tokens=tokens_path, | |
encoder=encoder_path, | |
decoder=decoder_path, | |
joiner=joiner_path, | |
provider="cpu", | |
num_threads=1, | |
sample_rate=16000, | |
feature_dim=80, | |
decoding_method="greedy_search", | |
# endpoint detection parameters | |
enable_endpoint_detection=True, | |
rule1_min_trailing_silence=ep_rule1, | |
rule2_min_trailing_silence=ep_rule2, | |
rule3_min_utterance_length=ep_rule3, | |
) | |
def stream_audio(raw_pcm_bytes, stream, recognizer, orig_sr): | |
audio = np.frombuffer(raw_pcm_bytes, dtype=np.float32) | |
if audio.size == 0: | |
return "", 0.0 | |
resampled = resample_audio(audio, orig_sr, 16000) | |
rms = float(np.sqrt(np.mean(resampled ** 2))) | |
stream.accept_waveform(16000, resampled) | |
if recognizer.is_ready(stream): | |
recognizer.decode_streams([stream]) | |
result = recognizer.get_result(stream) | |
return to_ZHTW.convert(result), rms |