Spaces:
Running
Running
import time | |
import logging | |
import gradio as gr | |
import cv2 | |
import os | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
from llama_cpp.llama_chat_format import Llava15ChatHandler | |
import base64 | |
import gc | |
# ---------------------------------------- | |
# Model configurations: per-size prefixes and repos | |
MODELS = { | |
"256M": { | |
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-256M-Video-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct", | |
"model_variants": ["Q2_K","Q8_0", "f16"], | |
"clip_variants": ["Q8_0", "f16"], | |
}, | |
"500M": { | |
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-500M-Video-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct", | |
"model_variants": ["Q2_K","Q8_0", "f16"], | |
"clip_variants": ["Q8_0", "f16"], | |
}, | |
"2.2B": { | |
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-2.2B-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct", | |
"model_variants": ["Q2_K","Q4_K_M", "Q8_0", "f16"], | |
"clip_variants": ["Q8_0", "f16"], | |
}, | |
} | |
# ---------------------------------------- | |
# Cache for loaded model instance | |
model_cache = { | |
'size': None, | |
'model_file': None, | |
'clip_file': None, | |
'llm': None | |
} | |
# Helper to download & symlink weights | |
def ensure_weights(size, model_file, clip_file): | |
cfg = MODELS[size] | |
if not os.path.exists(model_file): | |
logging.info(f"Downloading model file {model_file} from {cfg['model_repo']}...") | |
path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file) | |
os.symlink(path, model_file) | |
if not os.path.exists(clip_file): | |
logging.info(f"Downloading CLIP file {clip_file} from {cfg['clip_repo']}...") | |
path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file) | |
os.symlink(path, clip_file) | |
return model_file, clip_file | |
# Custom chat handler | |
class SmolVLM2ChatHandler(Llava15ChatHandler): | |
CHAT_FORMAT = ( | |
"<|im_start|>" | |
"{% for message in messages %}" | |
"{{ message['role'] | capitalize }}" | |
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:" | |
"{% else %}: " | |
"{% endif %}" | |
"{% for content in message['content'] %}" | |
"{% if content['type']=='text' %}{{ content['text'] }}" | |
"{% elif content['type']=='image_url' %}" | |
"{% if content['image_url'] is string %}" | |
"{{ content['image_url'] }}\n" | |
"{% elif content['image_url'] is mapping %}" | |
"{{ content['image_url']['url'] }}\n" | |
"{% endif %}" | |
"{% endif %}" | |
"{% endfor %}" | |
"<end_of_utterance>\n" | |
"{% endfor %}" | |
"{% if add_generation_prompt %}Assistant:{% endif %}" | |
) | |
# Load and cache LLM (only on dropdown change) | |
def update_llm(size, model_file, clip_file): | |
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file): | |
mf, cf = ensure_weights(size, model_file, clip_file) | |
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False) | |
llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024, | |
verbose=False, n_threads=max(2, os.cpu_count())) | |
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm}) | |
return None # no UI output | |
# Build weight filename lists | |
def get_weight_files(size): | |
cfg = MODELS[size] | |
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']] | |
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']] | |
return model_files, clip_files | |
# Caption using cached llm with real-time debug logs | |
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt): | |
debug_msgs = [] | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}") | |
# show which weight files we’re using this run | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}") | |
debug_msgs.append(f"[{timestamp}] Using CLIP weights: {clip_file}") | |
t_resize = time.time() | |
img = cv2.resize(frame.copy(), (384, 384)) | |
elapsed = (time.time() - t_resize) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms") | |
time.sleep(interval_ms / 1000) | |
t_enc = time.time() | |
success, jpeg = cv2.imencode('.jpg', img) | |
elapsed = (time.time() - t_enc) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms") | |
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode() | |
messages = [ | |
{"role": "system", "content": sys_prompt}, | |
{"role": "user", "content": [ | |
{"type": "image_url", "image_url": uri}, | |
{"type": "text", "text": usr_prompt} | |
]} | |
] | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM") | |
# re-init handler for image | |
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=False) | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler") | |
debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}") | |
t_start = time.time() | |
resp = model_cache['llm'].create_chat_completion( | |
messages=messages, | |
max_tokens=128, | |
temperature=0.1, | |
stop=["<end_of_utterance>"] | |
) | |
elapsed = (time.time() - t_start) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms") | |
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip() | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars") | |
gc.collect() | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Garbage collected") | |
return content, "\n".join(debug_msgs) | |
# Gradio UI | |
def main(): | |
logging.basicConfig(level=logging.INFO) | |
default = '2.2B' | |
mf, cf = get_weight_files(default) | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs") | |
with gr.Row(): | |
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size') | |
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights') | |
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights') | |
# When size changes: update dropdowns AND preload llm with the new first weights | |
def on_size_change(sz): | |
mlist, clist = get_weight_files(sz) | |
# update dropdown choices and default values | |
update_ui = ( | |
gr.update(choices=mlist, value=mlist[0]), | |
gr.update(choices=clist, value=clist[0]) | |
) | |
# preload with first weights | |
update_llm(sz, mlist[0], clist[0]) | |
return update_ui | |
size_dd.change( | |
fn=on_size_change, | |
inputs=[size_dd], | |
outputs=[model_dd, clip_dd] | |
) | |
model_dd.change(lambda sz, mf, cf: update_llm(sz, mf, cf), inputs=[size_dd, model_dd, clip_dd], outputs=[]) | |
clip_dd.change(lambda sz, mf, cf: update_llm(sz, mf, cf), inputs=[size_dd, model_dd, clip_dd], outputs=[]) | |
update_llm(default, mf[0], cf[0]) | |
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)') | |
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt') | |
usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt') | |
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed') | |
cap = gr.Textbox(interactive=False, label='Caption') | |
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log') | |
cam.stream( | |
fn=caption_frame, | |
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p], | |
outputs=[cap, log_box], | |
time_limit=600 | |
) | |
demo.launch() | |
if __name__ == '__main__': | |
main() | |