Luigi's picture
add debug to show which weight files we’re using this run
a459bee
raw
history blame
8.9 kB
import time
import logging
import gradio as gr
import cv2
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
import base64
import gc
# ----------------------------------------
# Model configurations: per-size prefixes and repos
MODELS = {
"256M": {
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-256M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct",
"model_variants": ["Q2_K","Q8_0", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
"500M": {
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-500M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct",
"model_variants": ["Q2_K","Q8_0", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
"2.2B": {
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
"model_prefix": "SmolVLM2-2.2B-Instruct",
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct",
"model_variants": ["Q2_K","Q4_K_M", "Q8_0", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
}
# ----------------------------------------
# Cache for loaded model instance
model_cache = {
'size': None,
'model_file': None,
'clip_file': None,
'llm': None
}
# Helper to download & symlink weights
def ensure_weights(size, model_file, clip_file):
cfg = MODELS[size]
if not os.path.exists(model_file):
logging.info(f"Downloading model file {model_file} from {cfg['model_repo']}...")
path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
os.symlink(path, model_file)
if not os.path.exists(clip_file):
logging.info(f"Downloading CLIP file {clip_file} from {cfg['clip_repo']}...")
path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file)
os.symlink(path, clip_file)
return model_file, clip_file
# Custom chat handler
class SmolVLM2ChatHandler(Llava15ChatHandler):
CHAT_FORMAT = (
"<|im_start|>"
"{% for message in messages %}"
"{{ message['role'] | capitalize }}"
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:"
"{% else %}: "
"{% endif %}"
"{% for content in message['content'] %}"
"{% if content['type']=='text' %}{{ content['text'] }}"
"{% elif content['type']=='image_url' %}"
"{% if content['image_url'] is string %}"
"{{ content['image_url'] }}\n"
"{% elif content['image_url'] is mapping %}"
"{{ content['image_url']['url'] }}\n"
"{% endif %}"
"{% endif %}"
"{% endfor %}"
"<end_of_utterance>\n"
"{% endfor %}"
"{% if add_generation_prompt %}Assistant:{% endif %}"
)
# Load and cache LLM (only on dropdown change)
def update_llm(size, model_file, clip_file):
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file):
mf, cf = ensure_weights(size, model_file, clip_file)
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False)
llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024,
verbose=False, n_threads=max(2, os.cpu_count()))
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm})
return None # no UI output
# Build weight filename lists
def get_weight_files(size):
cfg = MODELS[size]
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
return model_files, clip_files
# Caption using cached llm with real-time debug logs
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt):
debug_msgs = []
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}")
# show which weight files we’re using this run
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}")
debug_msgs.append(f"[{timestamp}] Using CLIP weights: {clip_file}")
t_resize = time.time()
img = cv2.resize(frame.copy(), (384, 384))
elapsed = (time.time() - t_resize) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms")
time.sleep(interval_ms / 1000)
t_enc = time.time()
success, jpeg = cv2.imencode('.jpg', img)
elapsed = (time.time() - t_enc) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms")
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode()
messages = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{"type": "image_url", "image_url": uri},
{"type": "text", "text": usr_prompt}
]}
]
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM")
# re-init handler for image
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=False)
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler")
debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}")
t_start = time.time()
resp = model_cache['llm'].create_chat_completion(
messages=messages,
max_tokens=128,
temperature=0.1,
stop=["<end_of_utterance>"]
)
elapsed = (time.time() - t_start) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms")
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars")
gc.collect()
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Garbage collected")
return content, "\n".join(debug_msgs)
# Gradio UI
def main():
logging.basicConfig(level=logging.INFO)
default = '2.2B'
mf, cf = get_weight_files(default)
with gr.Blocks() as demo:
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs")
with gr.Row():
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')
# When size changes: update dropdowns AND preload llm with the new first weights
def on_size_change(sz):
mlist, clist = get_weight_files(sz)
# update dropdown choices and default values
update_ui = (
gr.update(choices=mlist, value=mlist[0]),
gr.update(choices=clist, value=clist[0])
)
# preload with first weights
update_llm(sz, mlist[0], clist[0])
return update_ui
size_dd.change(
fn=on_size_change,
inputs=[size_dd],
outputs=[model_dd, clip_dd]
)
model_dd.change(lambda sz, mf, cf: update_llm(sz, mf, cf), inputs=[size_dd, model_dd, clip_dd], outputs=[])
clip_dd.change(lambda sz, mf, cf: update_llm(sz, mf, cf), inputs=[size_dd, model_dd, clip_dd], outputs=[])
update_llm(default, mf[0], cf[0])
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt')
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
cap = gr.Textbox(interactive=False, label='Caption')
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log')
cam.stream(
fn=caption_frame,
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p],
outputs=[cap, log_box],
time_limit=600
)
demo.launch()
if __name__ == '__main__':
main()