Luigi's picture
default to smallest model with q8 prcision, enable verbose mode, disable reset clip
65efb90
raw
history blame
10.2 kB
import time
import logging
import gradio as gr
import cv2
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
import base64
import gc
import io
from contextlib import redirect_stdout, redirect_stderr
import sys, llama_cpp
# ----------------------------------------
# Model configurations: per-size prefixes and repos
MODELS = {
"256M": {
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-256M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct",
"model_variants": ["Q8_0", "Q2_K", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
"500M": {
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-500M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct",
"model_variants": ["Q8_0", "Q2_K", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
"2.2B": {
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
"model_prefix": "SmolVLM2-2.2B-Instruct",
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct",
"model_variants": ["Q8_0", "Q2_K","Q4_K_M", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
}
# ----------------------------------------
# Cache for loaded model instance
model_cache = {
'size': None,
'model_file': None,
'clip_file': None,
'verbose': None,
'llm': None
}
# Helper to download & symlink weights
def ensure_weights(size, model_file, clip_file):
cfg = MODELS[size]
if not os.path.exists(model_file):
logging.info(f"Downloading model file {model_file} from {cfg['model_repo']}...")
path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
os.symlink(path, model_file)
if not os.path.exists(clip_file):
logging.info(f"Downloading CLIP file {clip_file} from {cfg['clip_repo']}...")
path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file)
os.symlink(path, clip_file)
return model_file, clip_file
# Custom chat handler
class SmolVLM2ChatHandler(Llava15ChatHandler):
CHAT_FORMAT = (
"<|im_start|>"
"{% for message in messages %}"
"{{ message['role'] | capitalize }}"
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:"
"{% else %}: "
"{% endif %}"
"{% for content in message['content'] %}"
"{% if content['type']=='text' %}{{ content['text'] }}"
"{% elif content['type']=='image_url' %}"
"{% if content['image_url'] is string %}"
"{{ content['image_url'] }}\n"
"{% elif content['image_url'] is mapping %}"
"{{ content['image_url']['url'] }}\n"
"{% endif %}"
"{% endif %}"
"{% endfor %}"
"<end_of_utterance>\n"
"{% endfor %}"
"{% if add_generation_prompt %}Assistant:{% endif %}"
)
# Load and cache LLM (only on dropdown or verbose change)
def update_llm(size, model_file, clip_file, verbose_mode):
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file'], model_cache['verbose']) != (size, model_file, clip_file, verbose_mode):
mf, cf = ensure_weights(size, model_file, clip_file)
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=verbose_mode)
llm = Llama(
model_path=mf,
chat_handler=handler,
n_ctx=8192,
verbose=verbose_mode,
n_threads=max(2, os.cpu_count())
)
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'verbose': verbose_mode, 'llm': llm})
return None
# Build weight filename lists
def get_weight_files(size):
cfg = MODELS[size]
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
return model_files, clip_files
# Caption using cached llm with real-time debug logs
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt, reset_clip, verbose_mode):
debug_msgs = []
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Verbose mode: {verbose_mode}")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] llama_cpp version: {llama_cpp.__version__}")
debug_msgs.append(f"[{timestamp}] Python version: {sys.version.split()[0]}")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}")
debug_msgs.append(f"[{timestamp}] Using CLIP weights: {clip_file}")
t_resize = time.time()
img = cv2.resize(frame.copy(), (384, 384))
elapsed = (time.time() - t_resize) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms")
time.sleep(interval_ms / 1000)
t_enc = time.time()
success, jpeg = cv2.imencode('.jpg', img, quality=50, )
elapsed = (time.time() - t_enc) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms")
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode()
messages = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{"type": "image_url", "image_url": uri},
{"type": "text", "text": usr_prompt}
]}
]
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM")
if reset_clip:
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=verbose_mode)
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}")
t_start = time.time()
# right before you call the Llama API:
buf = io.StringIO()
with redirect_stdout(buf), redirect_stderr(buf):
resp = model_cache['llm'].create_chat_completion(
messages=messages,
max_tokens=128,
temperature=0.1,
stop=["<end_of_utterance>"]
)
# grab every line the Llama client printed
for line in buf.getvalue().splitlines():
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] {line}")
elapsed = (time.time() - t_start) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms")
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars")
gc.collect()
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Garbage collected")
return content, "\n".join(debug_msgs)
# Gradio UI
def main():
logging.basicConfig(level=logging.INFO)
default = '256M'
default_verbose = True
mf, cf = get_weight_files(default)
with gr.Blocks() as demo:
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs")
with gr.Row():
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')
verbose_cb= gr.Checkbox(value=default_verbose, label='Verbose Mode')
def on_size_change(sz, verbose):
mlist, clist = get_weight_files(sz)
update_llm(sz, mlist[0], clist[0], verbose)
return gr.update(choices=mlist, value=mlist[0]), gr.update(choices=clist, value=clist[0])
size_dd.change(
fn=on_size_change,
inputs=[size_dd, verbose_cb],
outputs=[model_dd, clip_dd]
)
model_dd.change(
fn=lambda sz, mf, cf, verbose: update_llm(sz, mf, cf, verbose),
inputs=[size_dd, model_dd, clip_dd, verbose_cb],
outputs=[]
)
clip_dd.change(
fn=lambda sz, mf, cf, verbose: update_llm(sz, mf, cf, verbose),
inputs=[size_dd, model_dd, clip_dd, verbose_cb],
outputs=[]
)
verbose_cb.change(
fn=lambda sz, mf, cf, verbose: update_llm(sz, mf, cf, verbose),
inputs=[size_dd, model_dd, clip_dd, verbose_cb],
outputs=[]
)
update_llm(default, mf[0], cf[0], default_verbose)
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt')
reset_clip = gr.Checkbox(value=False, label="Reset CLIP handler each frame")
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
cap = gr.Textbox(interactive=False, label='Caption')
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log')
cam.stream(
fn=caption_frame,
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p, reset_clip, verbose_cb],
outputs=[cap, log_box],
time_limit=600,
)
demo.launch()
if __name__ == '__main__':
main()