Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,105 Bytes
b7495bb 920ed31 b7495bb 920ed31 b7495bb 920ed31 e6466c8 920ed31 b7495bb e6466c8 920ed31 e6466c8 920ed31 d8bc6cd 920ed31 e6466c8 b7495bb e6466c8 920ed31 b7495bb e6466c8 b7495bb e6466c8 b7495bb e6466c8 b7495bb e6466c8 b7495bb e6466c8 b7495bb e6466c8 b7495bb 22ff9fd b7495bb e6466c8 b7495bb 920ed31 e6466c8 b7495bb e6466c8 b7495bb e6466c8 b7495bb 920ed31 e6466c8 b7495bb e6466c8 b7495bb e6466c8 b7495bb 920ed31 e6466c8 b7495bb 920ed31 e6466c8 b7495bb 920ed31 e6466c8 b7495bb 920ed31 b7495bb 920ed31 b7495bb 920ed31 c207339 920ed31 e6466c8 920ed31 b7495bb 3efdfe5 920ed31 b7495bb 920ed31 e6466c8 b7495bb 920ed31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import tempfile
import spaces
import torch
import torchaudio
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
from qwen_omni_utils import process_mm_info
from opencc import OpenCC
import gradio as gr
from pyannote.audio import Pipeline as DiarizationPipeline
from pydub import AudioSegment, effects
# Converter from Simplified to Traditional Chinese
cc = OpenCC("s2t")
# Define available model IDs
MODEL_IDS = {
"3B": "Qwen/Qwen2.5-Omni-3B",
"7B": "Qwen/Qwen2.5-Omni-7B"
}
# Caches for loaded models and processors
_models = {}
_processors = {}
def get_model_and_processor(size: str):
"""
Load and cache the model and processor for the given size ("3B" or "7B").
"""
if size not in _models:
model_id = MODEL_IDS[size]
# Load model with device_map="auto" for ZeroGPU compatibility
m = Qwen2_5OmniForConditionalGeneration.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto"
)
m.disable_talker()
m.eval()
p = Qwen2_5OmniProcessor.from_pretrained(model_id)
_models[size] = m
_processors[size] = p
return _models[size], _processors[size]
# Cache the diarization pipeline so we only load it once
_diar_pipe = None
def get_diarization_pipe():
global _diar_pipe
if _diar_pipe is None:
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
try:
_diar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=hf_token or True
)
except Exception:
_diar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization@2.1",
use_auth_token=hf_token or True
)
return _diar_pipe
# Format a list of "[SPEAKER_X] text" snippets into colored HTML
def format_diarization_html(snippets):
palette = ["#e74c3c", "#3498db", "#27ae60", "#e67e22", "#9b59b6", "#16a085", "#f1c40f"]
speaker_colors = {}
html_lines = []
last_spk = None
for s in snippets:
if s.startswith("[") and "]" in s:
spk, txt = s[1:].split("]", 1)
spk, txt = spk.strip(), txt.strip()
else:
spk, txt = "", s.strip()
if not txt:
continue
if spk not in speaker_colors:
speaker_colors[spk] = palette[len(speaker_colors) % len(palette)]
color = speaker_colors[spk]
if spk == last_spk:
display = txt
else:
display = f"<strong>{spk}:</strong> {txt}"
last_spk = spk
html_lines.append(
f"<p style='margin:4px 0; font-family:monospace; color:{color};'>{display}</p>"
)
return "<div>" + "".join(html_lines) + "</div>"
def _strip_prompts(full_text: str) -> str:
"""
Remove system/user/assistant prefixes so only the actual ASR transcript remains.
"""
marker = "assistant"
if marker in full_text:
return full_text.split(marker, 1)[1].strip()
else:
return full_text.strip()
@spaces.GPU
def run_asr(
audio_path: str,
user_prompt: str,
model_size: str
):
# Validate inputs
if not audio_path:
yield format_diarization_html(["⚠️ Please upload an audio file first."])
return
# Load diarization model onto GPU/CPU
diarizer = get_diarization_pipe()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
diarizer.to(device)
# Load waveform + sample rate and push to device
waveform, sample_rate = torchaudio.load(audio_path)
waveform = waveform.to(device)
# Get appropriate Qwen model & processor based on selection
model, processor = get_model_and_processor(model_size)
model.to(device)
# Run diarization to get speaker turns
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate})
snippets = []
# For each speaker turn, slice audio, transcribe, convert, accumulate
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
# Extract the segment, normalize, export to temp file
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
segment = effects.normalize(segment)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
tmp_path = tmp.name
# Build messages for this segment
sys_prompt = (
"You are a speech recognition model."
)
messages = [
{"role": "system", "content": [{"type": "text", "text": sys_prompt}]},
{
"role": "user",
"content": [
{"type": "audio", "audio": tmp_path},
{"type": "text", "text": user_prompt}
],
},
]
# Apply chat template (no tokenization yet)
text_input = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Preprocess audio (and any images/videos, though here only audio)
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
# Tokenize & move tensors
inputs = processor(
text=text_input,
audio=audios,
images=images,
videos=videos,
return_tensors="pt",
padding=True,
use_audio_in_video=True
)
inputs = inputs.to(model.device).to(model.dtype)
# Generate for this snippet
output_tokens = model.generate(
**inputs,
use_audio_in_video=True,
return_audio=False,
thinker_max_new_tokens=512,
thinker_do_sample=False
)
# Decode (system+user+assistant)
full_decoded = processor.batch_decode(
output_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0].strip()
# Strip prefixes to isolate ASR transcript
asr_text = _strip_prompts(full_decoded)
# Convert to Traditional Chinese
asr_text = cc.convert(asr_text)
# Append with speaker label
snippets.append(f"[{speaker}] {asr_text}")
# Yield updated HTML so Gradio can stream
yield format_diarization_html(snippets)
# Clean up temp file for this segment
os.unlink(tmp_path)
return
# -----------------------------
# Gradio UI
# -----------------------------
DEMO_CSS = """
.diar {
padding: 0.5rem;
color: #f1f1f1;
font-family: monospace;
font-size: 0.9rem;
}
"""
with gr.Blocks(css=DEMO_CSS) as demo:
gr.Markdown("## Qwen2.5-Omni ASR with Speaker Diarization & S2T Conversion (ZeroGPU)")
with gr.Row():
audio_input = gr.Audio(
label="Upload Audio (WAV/MP3/…)",
type="filepath"
)
user_input = gr.Textbox(
label="User Prompt",
value="Transcribe the attached audio to text with punctuation."
)
model_selector = gr.Radio(
choices=["3B", "7B"],
value="7B",
label="Model Size"
)
# Example audio files
example_list = [
["audio/ads.mp3"],
["audio/meeting.mp3"],
["audio/news.mp3"]
]
gr.Examples(
examples=example_list,
inputs=[audio_input],
examples_per_page=3,
label="Try one of these audio files ⤵︎"
)
submit_btn = gr.Button("Transcribe")
diarized_output = gr.HTML(
label="Speaker-Diarized Transcript (Traditional Chinese)",
elem_classes=["diar"]
)
submit_btn.click(
fn=run_asr,
inputs=[audio_input, user_input, model_selector],
outputs=diarized_output
)
if __name__ == "__main__":
demo.queue()
demo.launch()
|