# app.py import spaces import gradio as gr from gradio import update from functools import lru_cache from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from opencc import OpenCC # 用於簡體轉繁體 from math import gcd from termcolor import cprint # 初始化簡體到繁體轉換器 cc = OpenCC('s2t') # 可選模型列表 MODEL_LIST = [ "liswei/Taiwan-ELM-270M", "Mxode/SmolLM-Chinese-180M", "openbmb/BitCPM4-0.5B", "flyingfishinwater/chinese-baby-llama2", "unsloth/gemma-3-1b-pt", "taide/TAIDE-LX-7B", "ckiplab/gpt2-tiny-chinese", "ckiplab/gpt2-base-chinese", "liswei/Taiwan-ELM-1_1B", "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "benchang1110/Taiwan-tinyllama-v1.0-base", "lianghsun/Llama-3.2-Taiwan-3B", "twinkle-ai/Llama-3.2-3B-F1-Instruct", "Epiculous/Violet_Twilight-v0.2", ] @lru_cache(maxsize=8) def get_pipeline(model_name): tok = AutoTokenizer.from_pretrained(model_name) mdl = AutoModelForCausalLM.from_pretrained( model_name, weights_only=False, trust_remote_code=True ) try: mdl.to("cuda") except Exception as e: print(f'Error: {e}') return pipeline("text-generation", model=mdl, tokenizer=tok, device=0) @spaces.GPU def suggest_next(text, model_name, k, m, num_beam_groups, diversity_penalty): """ 使用 Diverse Beam Search 產生 m 條候選: - num_beams = m - num_beam_groups, diversity_penalty 可調整多樣性 之後轉繁體、去重、合併共同前綴後回傳。 """ gen_pipe = get_pipeline(model_name) # 構造 generate 參數字典,僅在 penalty>0 時加入 diversity 相關 gen_kwargs = { "max_new_tokens": k, "num_beams": m, "num_return_sequences": m, "do_sample": False, "early_stopping": True, } if diversity_penalty and diversity_penalty > 0: valid_group = gcd(m, num_beam_groups) gen_kwargs["num_beam_groups"] = valid_group gen_kwargs["diversity_penalty"] = float(diversity_penalty) outs = gen_pipe(text, **gen_kwargs) # 提取純下文、過濾空字串、繁體化、確保 strip 處理 suggestions = set() for out in outs: snippet = out["generated_text"][len(text):].rstrip() if not snippet: continue converted = cc.convert(snippet) suggestions.add(converted) suggestions = list(suggestions) return update(choices=suggestions, value=None) def append_suggestion(current, choice): if choice is None: return current # 直接插入選中的候選文字 return current + choice # 自訂 CSS:模擬經典中文輸入法候選欄樣式,並優化手機響應與自動高度 custom_css = """ #suggestions-bar { width: 100%; margin-bottom: 8px; } #suggestions-bar .candidate-list { display: flex; gap: 8px; background: #fff; border: 1px solid #999; border-radius: 4px; padding: 6px; overflow-x: auto; white-space: nowrap; } #suggestions-bar .candidate-list label { cursor: pointer; padding: 6px 10px; font-size: 16px; } #suggestions-bar .candidate-list label:hover { background: #f5f5f5; } #suggestions-bar .candidate-list input[type=radio]:checked + label { background: #e6f7ff; border: 1px solid #1890ff; } #input-box textarea { width: 100%; font-size: 16px; padding: 6px; box-sizing: border-box; overflow: hidden; resize: none; } #predict-button { margin-top: 8px; width: 100%; } /* 手機響應式 */ @media only screen and (max-width: 600px) { #suggestions-bar .candidate-list label { padding: 8px; font-size: 18px; } #predict-button { font-size: 18px; } } """ # 自動增高腳本 auto_height_js = """ """ with gr.Blocks(css=custom_css) as demo: gr.HTML(auto_height_js) gr.Markdown( "## 🇹🇼 繁體中文 IME 加速器 \ " "結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。" ) with gr.Column(): suggestions = gr.Radio( [], label="", interactive=True, type="value", elem_id="suggestions-bar", elem_classes="candidate-list" ) input_text = gr.Textbox( label="", placeholder="請輸入拼音或文字…", lines=1, max_lines=20, elem_id="input-box" ) # 永遠顯示預測按鈕 with gr.Row(): auto_predict = gr.Checkbox( value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict" ) predict_button = gr.Button( "預測", elem_id="predict-button" ) with gr.Accordion("進階設定", open=False): model_selector = gr.Dropdown( MODEL_LIST, value=MODEL_LIST[0], label="模型" ) k_slider = gr.Slider( minimum=1, maximum=50, step=1, value=1, label="K(最大新詞元數)" ) m_slider = gr.Slider( minimum=1, maximum=30, step=1, value=10, label="M(建議數/Beam 數)" ) group_slider = gr.Slider( minimum=2, maximum=30, step=2, value=6, label="Beam 群組數 (num_beam_groups)" ) diversity_penalty_slider = gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=0.0, label="多樣性懲罰 (diversity_penalty)" ) # 綁定事件 predict_button.click( fn=suggest_next, inputs=[ input_text, model_selector, k_slider, m_slider, group_slider, diversity_penalty_slider ], outputs=suggestions, ) input_text.change( fn=lambda txt, mdl, k, m, g, d, auto: ( suggest_next(txt, mdl, k, m, g, d) if auto else update(choices=[], value=None) ), inputs=[ input_text, model_selector, k_slider, m_slider, group_slider, diversity_penalty_slider, auto_predict ], outputs=suggestions, ) suggestions.change( fn=append_suggestion, inputs=[input_text, suggestions], outputs=input_text, ) demo.launch()